

COURSE CONTENT

Academic Year	2023/2024	Semester	2
Course Coordinator	Dr. Charles W	ang Wei	
Course Code	CB4001		
Course Title	Microfluidics 8	Its Applications (Elect	ve)
Pre-requisites	Nil		
No of AUs	3		
Contact Hours	33 hours lectu	re, 6 hours tutorial	
Proposal Date	5 Oct 2021		

Course Aims

This course aims to provide students the fundamentals of microfluidic and Lab-On-Chip technology, including the basic fluid mechanics theory, microfabrication for microfluidics, microfluidic flow control and system development. Function of microfluidics components, such as valves, pumps and mixers will be explained in details. Applications of microfluidics and Lab-On-Chip will be highlighted by introducing the microfluidic components for life sciences, chemistry, point-of-care diagnostics, Organ-on-Chip and so on. Examples of emerging commercial microfluidic products (i.e. diagnostics cartridge, DNA amplification platforms) will be introduced during the course. Detailed case studies about microfluidic product development will be given on the development for disease diagnosis, prognosis, precision therapy, environment monitoring and so on. Through assignment, students will have the chance to research a particular type of microfluidic technology and its utility for specific applications;

Intended Learning Outcomes (ILO)

By the end of this course, you (as a student) would be able to:

- 1. Understand microfluidics technology and lab-on-a-chip systems
- 2. Master basic fluid mechanics at small scales
- 3. Know basic multi-physics for microfluidic applications
- 4. Apply standard fabrication technologies for microfluidics
- 5. Know advanced fabrication technologies for microfluidics
- 6. Master fundamentals of microfabrication techniques and explain the concept of chip design
- 7. Apply microfluidic components for life sciences and chemistry
- 8. Describe microfluidic applications with examples for diagnostics/therapy/ synthesis
- 9. Describe fabrication of polymer microfluidic chips
- 10. Know microfluidic technology in point-of-care test (POCT) diagnosis (including landscape in Singapore)
- 11. Explain basic microfluidic product development
- 12. Presentation of Group Study/Report
- 13. Presentation of Group Study/Report

Course Content

This course covers basic microfluidic and Lab-On-Chip knowledge, including the fluid mechanics theory, microfabrication for microfluidics, microfluidic flow control and system development. Students will be equipped with the relevant knowledge on a wide range of application areas

including environmental sensing, medical diagnostics, drug discovery, drug delivery, microscale chemical production, combinatorial synthesis and assays, artificial organs, and microscale energy systems.

Assessment (includes both continuous and summative assessment)

Component	Course LO Tested	Related Programme LO or Graduate Attributes	Weighti ng	Team /Individual	Assessm ent rubrics
1. Continuous assessment 1 (Quiz)	1,2,3,4,5	EAB SLOs a, b, d, f, j	20%	Individual	Refer to appendix 1
2. Continuous assessment 2 (Individual case study with report submission)	1,2,3,4,5, 6,7,8,9	EAB SLOs a, b, c, d, f, j,	30%	Individual	Refer to appendix 2
3. Group Assignment (Report & presentation)	1,2,3,4,5, 6,7,8,9,1 0,11,12	EAB SLOs a, b, c, d, f, i, j, l	50%	Team	Refer to appendix 3
Total	•		100%		

Course Intended		EAE	3's 12	Grac	luate	Attri	bute	s*				
Learning Outcomes	Cat	(a)	(b)	(c)	(d)	(e)	(f)	(g	(h)	(i)	(j)	(k)
	Elect	•	O	O	Š		Š		Š		O	
Introduction of microflu systems	idics tee	chnolo	ogy ai	nd lab	-on-a	-chip		<u> </u>		a	, f, j	
Explain fluid mechanics	s at sma	all sca	ales							a,	b, d	
Elaborate multi-physics for microfluidic applications						a, b, d						
Illustrate standard fabrication technologies for microfluidics						a, b, d						
Illustrate advanced fab	rication	techr	ologi	es for	micro	ofluidi	CS		a, b, d			
Apply various microfluidic components for life sciences and chemistry – part 1							a, b, c, j					
Apply various microfluidic components for life sciences and chemistry – part 2						a, b, c, j						
Demonstrate microfluid Diagnostics/therapy/ sy	•••		ns witl	n exa	mples	-			a, d, i			
Illustrate fabrication of	polyme	r micr	ofluid	ic chip	os wit	n cas	e stu	dy		a,	b, j	

diagnosis (inc	luding landscape in Singapore)	a, b, j					
Microfluidic product development with case study a, b, c, i							
Legend: Learning Outco	 Fully consistent (contributes to more thomes) 	nan 75% of Intended					
	• Partially consistent (contributes to about 50%	of Intended					
	Learning Outcomes) š Weakly consistent (contributes to about 25% o Learning Outcomes)	of Intended					
	Blank Not related to Student Learning Outcomes						
Formative feed	back						
Examination res	sults;						
	on overall examination performance;						
<i>uiz answers w</i>	ill be discussed in class						
earning and T	eaching approach						
Approach	How does this approach support students in a	achieving the learning					
	outcomes?						
Lecture	outcomes? Demonstrate how to carry out a procedure such a problem, use incomplete handouts which enabling class and practicing to resolve real cases.						
Lecture Tutorial	Demonstrate how to carry out a procedure such a problem, use incomplete handouts which enabling	g students participating in					
Tutorial	Demonstrate how to carry out a procedure such a problem, use incomplete handouts which enabling class and practicing to resolve real cases. Presentation of group study/report followed by distopics	g students participating in					
Tutorial Reading and R 1. Fundame	Demonstrate how to carry out a procedure such a problem, use incomplete handouts which enabling class and practicing to resolve real cases. Presentation of group study/report followed by distopics eferences ental of Microfabrication (Marc Madou, CRC Press, 2r	g students participating in scussion on selected					
Tutorial Reading and R 1. Fundame 2. Fundame	Demonstrate how to carry out a procedure such a problem, use incomplete handouts which enabling class and practicing to resolve real cases. Presentation of group study/report followed by distopics eferences ental of Microfabrication (Marc Madou, CRC Press, 2repentals and Applications of Microfluidics (Nam-Trung N	g students participating in scussion on selected					
Tutorial Reading and R 1. Fundame 2. Fundame Artech H	Demonstrate how to carry out a procedure such a problem, use incomplete handouts which enabling class and practicing to resolve real cases. Presentation of group study/report followed by distopics eferences ental of Microfabrication (Marc Madou, CRC Press, 2repentals and Applications of Microfluidics (Nam-Trung N	g students participating in scussion on selected nd edition); Iguyen and Steve Wereley					
Tutorial Reading and R 1. Fundame 2. Fundame Artech H 3. Dongqing	Demonstrate how to carry out a procedure such a problem, use incomplete handouts which enabling class and practicing to resolve real cases. Presentation of group study/report followed by distopics eferences ental of Microfabrication (Marc Madou, CRC Press, 2r entals and Applications of Microfluidics (Nam-Trung Nouse) g Li, Encyclopedia of Microfluidics and Nanofluidics, S	g students participating in scussion on selected nd edition); Iguyen and Steve Wereley					
Tutorial Reading and R 1. Fundame 2. Fundame Artech H 3. Dongqing	Demonstrate how to carry out a procedure such a problem, use incomplete handouts which enabling class and practicing to resolve real cases. Presentation of group study/report followed by distopics eferences ental of Microfabrication (Marc Madou, CRC Press, 2r entals and Applications of Microfluidics (Nam-Trung Nouse) g Li, Encyclopedia of Microfluidics and Nanofluidics, S s and Student Responsibilities	g students participating in scussion on selected nd edition); Iguyen and Steve Wereley Springer, 2008.					
Tutorial Reading and R 1. Fundame 2. Fundame Artech H 3. Dongqing Course Policies Beneral: Stude assignments/tes	Demonstrate how to carry out a procedure such a problem, use incomplete handouts which enabling class and practicing to resolve real cases. Presentation of group study/report followed by distopics eferences ental of Microfabrication (Marc Madou, CRC Press, 2r entals and Applications of Microfluidics (Nam-Trung Nouse) g Li, Encyclopedia of Microfluidics and Nanofluidics, S s and Student Responsibilities ents are expected to complete all online activities sts by due dates. Students are expected to take response	g students participating in scussion on selected nd edition); Iguyen and Steve Wereley Springer, 2008. s and take all schedule ponsibility to follow up wit					
Tutorial Reading and R 1. Fundame 2. Fundame Artech H 3. Dongqing Course Policies General: Stude assignments/tes course notes, a	Demonstrate how to carry out a procedure such a problem, use incomplete handouts which enabling class and practicing to resolve real cases. Presentation of group study/report followed by distopics eferences ental of Microfabrication (Marc Madou, CRC Press, 2rentals and Applications of Microfluidics (Nam-Trung Nouse) g Li, Encyclopedia of Microfluidics and Nanofluidics, S s and Student Responsibilities nts are expected to complete all online activities	g students participating in scussion on selected nd edition); Iguyen and Steve Wereley Springer, 2008. s and take all schedule ponsibility to follow up wit					

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the <u>academic integrity website</u> for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

- - -

Course Instructors

Instructor	Office Location	Phone	Email
Charles Wang Wei	NA	8518 3085	charles.wang@ntu.edu.sg

Week	Торіс	Course LO	Readings/ Activities
1	Introduction of microfluidics technology and lab-on-a-chip systems	1	Face to face lecture
2	Explain fluid mechanics at small scales	2	Face to face lecture
3	Elaborate multi-physics for microfluidic applications	3	Face to face lecture
4	Illustrate standard fabrication technologies for microfluidics	3	Face to face lecture
5	Illustrate advanced fabrication technologies for microfluidics	5	Face to face lecture
6	Master fundamentals of microfabrication techniques and explain the concept of chip design	6	Face to face lecture + Quiz
7	Apply various microfluidic components for life sciences and chemistry – part 1	7	Face to face lecture
8	Apply various microfluidic components for life sciences and chemistry – part 2	8	Face to face lecture
9	Demonstrate microfluidic applications with examples – Diagnostics/therapy/ synthesis	9	Face to face lecture
10	Illustrate fabrication of polymer microfluidic chips with case study	10	Face to face lecture
11	Apply microfluidic technology in point-of- care test (POCT) diagnosis (including landscape in Singapore)	11	Face to face lecture
12	Microfluidic product development with case study – part 1	12	Tutorial 1
13	Microfluidic product development with case study – part 2	13	Tutorial 2

Criteria	Unsatisfactory: <40%	Borderline: 40% to 49%	Satisfactory: 50% to 69%	<u>Very good: 70% to</u> 89%	Exemplary: >90 %
Knowledge Understanding of principles of microfluidic technology	 Lacks understandin g of the principles of microfluidic technology. Unable to apply the principles of microfluidic technology to solve engineering problems. 	 Partial understanding of the principles of microfluidic technology. Can apply the principles of microfluidic technology to solve simple engineering problems. 	 Good understanding of the principles of microfluidic technology. Can apply the principles of microfluidic technology to solve medium level engineering problems 	 Good and comprehensive understanding of the principles of microfluidic technology. Can apply the principles of microfluidic technology to solve engineering problems. 	 Very good and comprehensiv e understanding of the principles of microfluidic technology. Can apply the principles of microfluidic technology to solve engineering problems.
Evaluation Able to solve numerical problems in basic microfluidics	• Calculations are attempted but are both unsuccessful and are not comprehensiv e.	 Calculations are attempted but represent only a portion of the calculations required with some comprehensive to solve the problem. 	• Calculations attempted are mostly successful and sufficiently comprehensiv e to solve the problem.	• Calculations attempted are all successful and sufficiently comprehensive to solve the problem.	• Calculations attempted are all successful and fully comprehensiv e to solve the problem; calculations are also presented elegantly

Appendix 1: Assessment Criteria

Appendix 2: Assessment Criteria for Individual Case Study with Report Submission

Individual project (e.g. Evaluation of a commercialized microfluidic based Point-of-Care Product)

Assessment of report

Criteria	Unsatisfactory: <u><40%</u>	Borderline: 40% to 49%	Satisfactory: 50% to 69%	<u>Very good: 70%</u> <u>to 89%</u>	Exemplary: <u>>90%</u>
Knowledge & Comprehension Understanding of principles of microfluidic technology	 Lack of evidence of research/stud y and objectives are not clear. Lacks understanding of the principles of microfluidic technology. Unable to identify the principles of microfluidic technology to solve engineering problems. 	 Objectives are clearly communicate and there is evidence of research /study with acceptable amount of material prepared. Partial understanding of the principles of microfluidic technology. Can identify the principles of microfluidic technology to solve simple engineering problems. 	 There is clear statement of topic objective and there is evidence of research /study with appropriate amount of material prepared. Good understanding of the principles of microfluidic technology. Can identify the principles of microfluidic technology to solve medium level engineering problems 	 Objectives are well addressed and well linked to concepts/ knowledge from lectures. Appropriate amount of material is prepared well relevant to the overall message. Good and comprehensive understanding of the principles of microfluidic technology. Can identify the principles of microfluidic technology to solve engineering problems. 	 There is a clear logical sequence and information flow to the topic objective. Overall good grasp of the subject matter is demonstrated. Very good and comprehensive understanding of the principles of microfluidic technology. Can identify the principles of microfluidic technology to solve engineering problems.
Application Applying microfluidic principles to solve/analyze problems	 Unable to understand microfluidic applications and apply the knowledge to design and optimize microfluidic systems Examples chosen to support the argument are irrelevant and not persuasive at all. 	 Can read and partially understand microfluidic applications and apply the knowledge to design and optimize simple microfluidic systems Examples chosen to support the argument are partially relevant and persuasive. 	 Can read and understand microfluidic applications and apply the knowledge to design and optimize simple microfluidic systems Examples chosen to support the argument are relevant and partially persuasive. 	 Can read and understand microfluidic applications and apply the knowledge to design and optimize medium level microfluidic systems Examples chosen to support the argument are relevant and persuasive. 	 Can read and understand microfluidic applications and apply the knowledge to design and optimize microfluidic systems Examples chosen to support the argument are very appropriate for a convincing argument

Analysis•Unable to make reasonable assumptions, make reasonable assumptions, and suggest/choose appropriate methods.•Can make reasonable assumptions and judgment, but the choice of methods are not about drawing any conclusions.•Can make reasonable assumptions and judgment, but the choice of methods are not about about the outcome.•Can make reasonable assumptions and judgment, can choose appropriate methods.•Can make reasonable assumptions and judgment, but the choice of methods are not appropriate, uncertain about drawing any conclusions.•Can make reasonable assumptions and judgment, can choose appropriate methods and predict the not not not not not not conclusions.•Can make reasonable assumptions and judgment, can choose appropriate methods and predict the outcome not not not not not not not conclusions.	 Can make correct assumptions, can choose appropriate methods to solve the problem and draw conclusions. Can identify potential problems and tailor the process
---	--

Appendix 3: Assessment Criteria for Group Assignment

Group assignment (e.g. Propose development of microfluidic device/system for certain application)

Criteria	Unsatisfactory: <u><40%</u>	Borderline: 40% to 49%	Satisfactory: 50% to 69%	<u>Very good: 70%</u> <u>to 89%</u>	Exemplary: >90%
Knowledge & Comprehension Understanding of principles of microfluidic technology	 Lack of evidence of research/stud y and objectives are not clear. Lacks understanding of the principles of microfluidic technology. Unable to identify the principles of microfluidic technology to solve engineering problems. 	 Objectives are clearly communicate and there is evidence of research /study with acceptable amount of material prepared. Partial understanding of the principles of microfluidic technology. Can identify the principles of microfluidic technology to solve simple engineering problems. 	 There is clear statement of topic and objective and there is evidence of research /study with appropriate amount of material prepared. Good understanding of the principles of microfluidic technology. Can identify the principles of microfluidic technology to solve medium level engineering problems 	 Objectives are well addressed and linked to concepts/ knowledge from lectures. Appropriate amount of material is prepared well relevant to the overall message. Good and comprehensive understanding of the principles of microfluidic technology. Can identify the principles of microfluidic technology to solve engineering problems. 	 There is a clear logical sequence and information flow to the topic objective. Overall good grasp of the subject matter is demonstrated. Very good and comprehensive understanding of the principles of microfluidic technology. Can identify the principles of microfluidic technology to solve engineering problems.
Application Applying microfluidic principles to solve/analyze problems	 Unable to understand microfluidic applications and apply the knowledge to design and optimize microfluidic systems Examples chosen to support the argument are irrelevant and not persuasive at all 	 Can read and partially understand microfluidic applications and apply the knowledge to design and optimize simple microfluidic systems Examples chosen to support the argument are partially relevant and persuasive 	 Can read and understand microfluidic applications and apply the knowledge to design and optimize simple microfluidic systems Examples chosen to support the argument are relevant and partially persuasive 	 Can read and understand microfluidic applications and apply the knowledge to design and optimize medium level microfluidic systems Examples chosen to support the argument are relevant and persuasive 	 Can read and understand microfluidic applications and apply the knowledge to design and optimize microfluidic systems Examples chosen to support the argument are very appropriate for a convincing argument

Group assignment (Oral presentation + reporting slides)

Analysis Able to analyze problems, make reasonable assumptions, and suggest/choose appropriate methods.	 Unable to make reasonable assumptions and judgment according to the nature of the problems, uncertain about drawing any conclusions. 	• Can make reasonable assumptions and judgment, but the choice of methods are not appropriate, uncertain about the accuracy of the outcome.	 Can make reasonable assumptions and judgment, can choose appropriate methods and predict the outcome mostly, but not necessarily the best choice. 	Can make reasonable assumptions and judgment, can choose appropriate methods and predict the outcome, can draw reasonable conclusions.	Can make correct assumptions, can choose appropriate methods to solve the problem and draw conclusions. Can identify potential problems and tailor the process accordingly.
Presentation and Q&A Demonstrate a technically strong understanding of topic and flawless report in presentation	Topics have not been fully addressed and discussed. Many errors or ambiguities are present.	Topics have been partially addressed and discussed with solution well proposed. Some errors or ambiguities are present.	 Relevant topics have been addressed. Few development alternatives are discussed. Errors or ambiguities are present. The final development solution is not necessarily adequate. 	 Includes several design alternatives. These have been analysed and discussed. A few minor errors or ambiguities are present. The final development solution is adequate. 	 Clear and logical description of the development process, including several solutions. These have been correctly analysed, discussed and presented. Good presentation of the final solution

Assessment Criteria for Peer Evaluation:

If you are working as a group with other students for the homework submission, then, each student in the group is required to rate the contribution of other group members. All evaluations are held in confidence so no student will know how other group members rate his/her contribution. You are to evaluate other group members fairly and objectively, bearing in mind the implications for the other members' grades (explained below). It is absolutely essential for you to submit your peer evaluation form to get marks. To factor peer evaluations into the marks for your homework assignment, the following computation will be used:

- If, on average, a student receives a rating of 9 or more, that student receives 100% of the group's grade.
- If, on average, a student receives a rating of less than 9, that student receives a specific percentage of the group's grade to be determined by the formulae below:

An average rating of 8 to < 9 = 90% + (average rating obtained - 8)*10

An average rating of 7 to < 8 = 80% + (average rating obtained - 7)*10

An average rating of 6 to < 7 = 70% + (average rating obtained - 6)*10

An average rating of 5 to < 6 = 60% + (average rating obtained - 5)*10

An average rating of 4 to < 5 = 50% + (average rating obtained - 4)*10

An average rating of 3 to < 4 = 40% + (average rating obtained - 3)*10

An average rating of < 3 will be investigated by your instructor and the student may receive 0% of group grades.

Example 1:

Assume the overall group assignment is 50 marks, and out of 50 your group got 50 marks. A student with an average rating of 9.10 gets 100% of 50 marks, i.e., 50 marks. An average rating of 6.29 means that a student gets 72.9% (or 70%+(6.29-6)*10) of 50 marks, i.e., 36.45 marks.

Example 2:

Assume the overall group assignment is 50 marks, and out of 50 your group got 30 marks. A student with an average rating of 9.10 gets 100% of 30 marks, i.e., 30 marks. An average rating of 6.29 means that a student gets 72.9% (or 70%+(6.29-6)*10) of 30 marks, i.e., 21.87 marks. Your instructor reserves the right to review the student ratings for questionable circumstances, which include, but are not limited to, acts of discrimination or malice.

Criteria	Yourself	Member 1	Member 2	Member 3	Member 4	Member 5
Contributed the fair share of work (Score: 0 to 10)						
TOTAL						
Comments, if any						

Appendix 4: The EAB (Engineering Accreditation Board) Accreditation SLOs (Student Learning Outcomes)

- a) **Engineering knowledge:** Apply the knowledge of mathematics, natural science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems
- b) **Problem Analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c) **Design/development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- d) **Investigation:** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e) **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- f) **The engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- g) **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for the sustainable development.
- h) **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i) Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- j) **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- k) Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and economic decision-making, and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- I) Life-long Learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change