

COURSE CONTENT

Academic Year	2023/2024	Semester	2	
Course Coordinator	Prof. Xu Rong / /	Assoc. Prof. Tan That	t Yang Timothy	
Course Code	CH1104			
Course Title	Materials and Er	ergy Balances		
Pre-requisites	Nil			
No of AUs	3			
Contact Hours	26 hours lecture	13 hours tutorial		
Proposal Date	15 Nov 2019			

Course Aims

This subject focuses on the material and energy balances in chemical processes and lays that foundation in other chemical engineering subjects such as thermodynamics, unit operations, reaction kinetics, etc. It introduces the engineering approach to problem solving: Breaking a process down into its components, establishing the relations between known and unknown process variables, assembling the information needed to solve for the unknowns, and finally obtaining the solution using appropriate computational methods.

Intended Learning Outcomes (ILO)

Upon successful completion of this course, you should be able to:

- 1) Check the units in an equation for consistency and convert values between different unit systems.
- 2) Calculate process flow rates in mass, molar, and volumetric units given the appropriate process data.
- 3) Construct a flow chart from a written description of a process.
- 4) Balance material flow sheets incorporating multiple process units with recycle, purge, and bypass streams for processes without chemical reactions.
- 5) Balance a material flow sheet incorporating multiple process units, and recycle, purge, and bypass streams for reactive processes given extents of reaction and/or yield and selectivity data for the reactions.
- 6) Use the ideal gas law to calculate properties of pure gases and gas mixtures.
- 7) Estimate the properties of real gases/liquids using a non-ideal equations and compressibility chart.
- 8) Perform mass balance calculations for processes involving gas-liquid phases. Understand colligative properties (vapour pressure, boiling point and melting point) of solid-liquid systems.
- 9) Apply the first law of Thermodynamics and use it to perform energy balances on closed/open systems to calculate the changes in Energy/Work/Other system parameters.
- 10) Use the Property Tables of steam/humid air and other important molecules/systems.
- 11) Design the hypothetical paths for the computation of energy balance for steady state energy balances in a system with phase changes and chemical reactions.
- 12) Compute the energy balance for transient state mass & energy balances in a system without phase changes and chemical reactions.

Course Content

Material Balance: Process variables calculations; Material balance Calculation; Degree of Freedom analysis; Non-reactive and reactive processes for single & multiple unit processes with recycle, purge and bypass; Combustion processes; Ideal and non-ideal gas equation of states; Material balance for single and multi-component phase equilibria.

Energy Balance: Energy and energy balances for closed and open systems, steam table, energy balance for mechanical processes, hypothetical path, humidity chart, heat capacity, mixing and solution, heat of reaction, Hess's law, heat of formation, heat of combustion, energy balance for reactive process, mass & energy balance for transient process.

Component	Course LO Tested	Related Programme LO or Graduate Attributes	Weighting	Team /Individual	Assessment rubrics
1. CA (40%) a. Class Quiz (Mass Balance) (20%)	ILO 1-5.	a, b, c	20%	Individual	refer to Appendix A
b. Class Quiz (Energy Balance) (20%)	ILO 9-11.	a, b, c	20%	Individual	refer to Appendix A
2. Final Examination (60%) (2hrs Closed Book)	ILO 1-12	a, b, c	60%	Individual	refer to Appendix A
Total	•		100%		

Assessment (includes both continuous and summative assessment)

Mapping of Course ILOs to EAB Graduate Attributes

Course Intended		EAB's 12 Graduate Attributes*											
Learning	Cat	(a)	(b)	(c)	(d)	(e)	(f)	(a)	(h)	(i)	(i)	(k)	(1)
Outcomes	-	(4)	(5)	(0)	(9)	(0)	(1)	(9)	(11)	(1)	0/	(14)	(1)
	Core	•	•	•									
Check the units in an equation for consistency and convert values between different unit systems.						5	a, b						
Calculate process flow	w rates	in ma	ass, n	nolar,	and	volum	netric	units		a, b			
given the appropriate	proces	s data	a.										
Construct a flow char	t from a	writt	en de	scrip	tion o	f a pr	ocess	S.			a, b	, C	
Balance material flow with recycle, purge, a chemical reactions.	Balance material flow sheets incorporating multiple process units with recycle, purge, and bypass streams for processes without chemical reactions						a, b						
Balance a material flow sheet incorporating multiple process units, and recycle, purge, and bypass streams for reactive processes given extents of reaction and/or yield and selectivity data for the						5,	a, b						
Use the ideal gas law to calculate properties of pure gases and gas mixtures.					as	a, b							
Estimate the properties of real gases/liquids using a non-ideal equations and compressibility chart.						a, b							
Perform mass balance calculations for processes involving gas- liquid phases. Understand colligative properties (vapour pressure, boiling point and melting point) of solid-liquid systems.					,	a, b, c							
Apply the first law of Thermodynamics and use it to perform energy balances on closed/open systems to calculate the changes in a, b, c Energy/Work/Other system parameters. a, b, c													
Use the Property Tables of steam/humid air and other important molecules/systems.						а							

Design the h balance for s	ypothetical paths for the computation of energy teady state energy balances in a system with phase	a, b, c				
changes and Computation balances in a	chemical reactions. of energy balance for transient state mass & energy a system without phase changes and chemical	b, c				
reactions.						
Legend: Outcomes)	• Fully consistent (contributes to more than 75% of	f Intended Learning				
	 Partially consistent (contributes to about 50% of Outcomes) 	Intended Learning				
	š Weakly consistent (contributes to about 25% of li Outcomes)	ntended Learning				
	Blank Not related to Student Learning Outcomes					
Eormative feed Examination re Marker's report Quiz performar	Iback sults; on overall examination performance will be uploaded to nce and solutions will be provided.	NTUlearn;				
earning and	Feaching approach					
Approach	pproach How does this approach support students in achieving the learning outcomes?					
Lecture Demonstrate how to carry out a procedure such as working through a problem, use incomplete handouts which enabling students participating in class.						
Tutorial	Discussion sessions on tutorial questions and related topics					
Reading and F	References					
ext: Elementary Pr lohn Wiley and Reference: Numerical Meth Science/Engine	nciples of Chemical Processes," 4th edition, R.M. Felder Sons, 2017. nods for Engineers by Steve Chapra, Raymond Canale, N eering/Math; (January 1998)	and R.W. Rousseau, <i>I</i> cGraw-Hill				
Course Policie General: Stude and course rela and activities.	es and Student Responsibilities nts are expected to take responsibility to follow up with co ted announcements. Students are expected to participate	urse notes, assignments in all tutorial discussions				
Continuous ass	essments: Students are required to attend all continuous Continuous assessments make up a significant portion of	s assessments. f students' course grade e will result in no marks				
Absenteeism: (Absence from and affect stude	continuous assessments without officially approved leav ents' overall course grade.					
Absenteeism: (Absence from and affect stude Academic Inte	continuous assessments without officially approved leav ents' overall course grade. grity					

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the <u>academic integrity website</u> for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Course Instructors

Instructor	Office Location	Phone	Email
Timothy Tan	N1.2 B1-22	63168829	tytan@ntu.edu.sg
Xu Rong	N1.2 B1-10	67906713	rxu@ntu.edu.sg

Planned Weekly Schedule

Week	Торіс	Course LO	Readings/ Activities
1	Unit conversion and process variable	1, 2, 6, 7	Text: Chp 2, 3, 5
2	Material balance for physical process	3, 4, 8	Text: Chp 4, 6
3	Material balance for chemical processes	3, 5	Text: Chp 4, 6
4	Material balance for single and multi-phase	3, 4, 5, 8	Text: Chp 4, 6
	systems		
5	Energy balance	9,10	Text: Chp 7,8
6	Balances on nonreactive processes	9, 10	Text: Chp 8
7	Balances on reactive processes	11	Text: Chp 9
8	Balance on transient processes	12	Text: Chp 11

Appendix 1: Assessment Criteria

Criteria	Unsatisfactory : <40%	Borderline: 40% to 49%	Satisfactory: 50% to 69%	<u>Very good: 70%</u> to 89%	Exemplary: >90 %
Check and calculate units for process flow rates in mass, molar, and volumetric and different states in the ideal and non- ideal equation of states, given the appropriate process data and convert values between different unit systems.	Unable to perform check and calculations	Barely able to perform check and calculatio ns	Able to perform check and calculations on simple questions	Able to perform check and calculations on complex questions	Able to perform check and calculations on highly complex questions requiring design and synthesis
Construct a flow chart from a written description of a process, and solve for material balance involving physical and chemical processes, and process involving gas-liquid phases.	Unable to construct and solve	Barely able to construct and solve	Able to construct flow chart based on simple process description and solve simple problems	Able to construct flow chart based on indirect process description and solve complex problems	Able to construct flow chart based on complex process description and solve highly complex problems
Apply Property Tables of steam/humid air and other important molecules/systems to perform energy balance calculations	Unable to apply the properties	Barely able to apply the properties	Able to apply some properties	Able to apply most of the properties	Able to apply all the properties
Construct a flow chart from a written descript of a process, set up energy balance, and solve for energy balance for open and closed systems involving phase change, heat of mixing and chemical reactions.	Unable to construct and solve	Barely able to construct and solve	Able to construct flow chart based on simple process description and solve simple problems	Able to construct flow chart based on indirect process description and solve complex problems	Able to construct flow chart based on complex process description and solve highly complex problems

Appendix 2: The EAB (Engineering Accreditation Board) Accreditation SLOs (Student Learning Outcomes)

- a) **Engineering knowledge:** Apply the knowledge of mathematics, natural science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems
- b) **Problem Analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c) **Design/development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- d) **Investigation:** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e) **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- f) **The engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- g) **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for the sustainable development.
- h) **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i) **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- j) Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- k) Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and economic decision-making, and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long Learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change