

COURSE CONTENT

Academic Year	2024/2025 Semester 1
Course Coordinator	Assoc. Prof. Tan Thatt Yang Timothy
Course Code	CH1801
Course Title	Chemical and Biomolecular Engineering Laboratory 1A
Pre-requisites	Nil
No of AUs	1
Contact Hours	0 hours lecture, 0 hours tutorial, 24 hours Laboratory
Proposal Date	31 May 2019

Course Aims

This laboratory course aims to provide practical applications to reinforce theories and concepts taught in first year of chemical and biomolecular engineering.

Intended Learning Outcomes (ILO)

By the end of this course, you should be able to:

- 1. Establish your scientific understanding using appropriate laboratory experiments
- 2. Convert raw data to a physically meaningful form
- 3. Apply appropriate methods to plot, analyse, and represent experimental results and verify principles when applicable
- 4. Write a formal technical/scientific report to introduce the background, objectives, methodology, discussion of results and conclusions of experiments

Course Content

Laboratory experiments are related to lab techniques and analysis tools in field of chemical and biomolecular Engineering such as the use of Excel, Matlab, Hysys, concepts of Solubility [CH1104], Solubility Product [CH1104], Combustion [CH1104], Bomb Calorimetry [CH1104], Titration, Plasmid Isolation [CH1131], and Enzyme Digestion [CH1131]. The square brackets indicate the courses in which the concepts of the respective experiments are covered.

Assessment (includes both continuous and summative assessment)

Component	Course LO Tested	Related Programme LO or Graduate Attributes	Weighting	Team /Individual	Assessment rubrics
Continuous Assessment (100%)	1, 2, 3, 4	a, b, c, d, e, j, l	100%	Individual	See Appendix 1
Total			100%		

Mapping of Course ILOs to EAB Graduate Attributes

Course Intended	Cat	EAB'	s 12 G	raduat	<u>e Attri</u>	butes*							
Learning Outcomes	Cal	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(l)
CH1801 Chemical and Biomolecular Engineering Laboratory 1A	Core	•	•	•	•	•				0	•		0
Establish your scientific understanding using appropriate laboratory									c, d,				
2. Convert raw data to a physically meaningful form EAB SLO*						LO* a	ı, b, c,	d, e					
3. Apply appropriate methods to plot, analyse, and represent experimental results and verify principles when applicable							d, e						

 Write a formal technical/scientific report to introduce the background, objectives, methodology, discussion of results and conclusions of experiments

EAB SLO* j, I

Legend:

- Fully consistent (contributes to more than 75% of Intended Learning Outcomes)
- Partially consistent (contributes to about 50% of Intended Learning Outcomes)
- o Weakly consistent (contributes to about 25% of Intended Learning Outcomes)

Blank Not related to Student Learning Outcomes

Formative feedback

Marker's report on lab report submission will be available in NTUlearn at the end of the semester.

Learning and Teaching approach

Approach	How does this approach support students in achieving the learning outcomes?					
Laboratory	Questions related to the specific topics are provided in each experiment lab manual. Experiment are to be conducted and the results obtained will be utilized to answer the questions posted. A report will need to be generated to provide the background, objectives, methodology, discussion of the results obtained and a conclusion of the findings.					

Reading and References

Lab manuals are provided in NTULearn

Course Policies and Student Responsibilities

General: You are expected to adhering to Health Safety and Environment (HSE) instructions, especially in following safe operating procedures and training, for your own safety and health and that of your colleagues or fellow students. Staff and students shall report unsafe conditions/equipment or practices to supervisors for remedial actions.

You are also expected to read the respective lab manuals before attending the lab sessions and participate in the assigned lab sessions. You are expected to submit logsheet or formal report based on lab schedule and respective lab group. Logsheet submission deadline will be 12 midnight, 7 days from the date of experiment while formal report submission deadline will be 12 midnight, 14 days from the date of experiment. Guidelines on the structure of formal report are given in **Appendix 2**.

Absence from lab sessions with officially approved leave will be allowed to do makeup at the of the semester. If you are absent from a lab session without valid leave of absence, you will receive zero mark in the particular lab experiment and report submitted will not be graded.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the <u>academic integrity website</u> for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Course Instructors

Ī	Instructor	Office Location	Phone	Email	
	Tan Thatt Yang Timothy	N1.2-B1-22	6316 8829	TYTAN@ntu.edu.sg	

Planned Weekly Schedule

Week	Topic	Course LO	Readings/ Activities
3	Experiment 1	1, 2, 3, 4	Lab manual 1
4	Experiment 2	1, 2, 3, 4	Lab manual 2
5	Experiment 3	1, 2, 3, 4	Lab manual 3
6	Experiment 4	1, 2, 3, 4	Lab manual 4
7	Experiment 5	1, 2, 3, 4	Lab manual 5
8	Experiment 6	1, 2, 3, 4	Lab manual 6
9	Experiment 7	1, 2, 3, 4	Lab manual 7
10	Experiment 8	1, 2, 3, 4	Lab manual 8

Appendix 1: Assessment Criteria

	Exceptional (10-8)	Admirable (6-7)	Acceptable (4-5)	Poor (1-3)
Overall	Appropriate as a piece of scientific	Minimal awkward phrasing or word	Many passages are phrased poorly,	Poorly organized narrative with frequent
presentation	writing. Words were chosen carefully	choices. Report is easy to read and	contained awkward word choices, or	awkward phrases and poor word
P	and appropriately. Sentence structure	constructed properly. Evidence of editing	many long sentences. Narrative is	choices. Sentences are too long or
	was clear and easy to follow. The report	with	disorganized in many places.	short. Lacks cohesion, style and fluidity.
	is free of spelling, punctuation, and	less than three grammatical and/or	Multiple grammatical and/or spelling	Frequent spelling and grammatical
	grammatical errors .	spelling errors.	errors.	errors.
Introduction	A cohesive, well-written summary of the	Mostly complete but does not provide	Certain major introductory points are	Very little background information is
	background material pertinent to the	context for minor points. Contains	missing (ex: background, theory, etc.) or	provided and/or information is incorrect.
	experiment with appropriate references.	relevant information but certain	explanations are unclear and confusing.	No reference is provided.
	Purpose of the experiment is clearly	information is not cohesive. Some	Few references are provided.	·
	stated. References are used properly.	references are provided.	·	
Methodology	Contains details on how the experiment	Narrative includes most important	Missing several experimental details or	Several important experimental details
0,	was performed and the procedures	experimental details but is missing some	some incorrect statements.	are missing. Or copied directly from the
	followed. Written in the correct tense.	relevant information.		lab manual.
Results	All figures, graphs, and tables are	All figures, graphs, and tables are	Most figures, graphs, and tables are	Figures, graphs, and tables are poorly
	numbered with appropriate captions. All	correctly drawn, but some have minor	included, but some important or required	constructed; have missing titles,
	tables, figures, etc. are explicitly	problems that could be still be improved.	features are missing. Certain data	captions or numbers. Certain data
	mentioned in the text. Relevant	All data and associated figures, etc. are	reported are not mentioned in the text or	reported are not mentioned in the text.
	experimental data are presented which	mentioned in the text. Most relevant data	are missing. Captions are not descriptive	Important data missing.
	are used in the discussion.	are presented.	or incomplete.	
Discussion/	Demonstrates a logical, coherent	Demonstrates an understanding of the	While some of the results have been	Does not demonstrate an understanding
Conclusions	working knowledge and understanding	majority of important experimental	correctly interpreted and discussed,	of the important experimental concepts,
	of important experimental concepts,	concepts, forms conclusions based on	partial but incomplete understanding of	forms inaccurate conclusions, suggests
	forms appropriate conclusions based on	results and/or analysis but either lacks	results is still evident. Student fails to	inappropriate improvements in the
	interpretations of results, includes	proper interpretation, suggests	make one or two connections to	experiment, refers to the literature
	applications of and improvements in the	inappropriate improvements in the	underlying theory. Address some of the	insufficiently, and lacks overall
	experiment, references collected data	experiment, refers to the literature	specific points or questions posed in the	justification of error. Address none of the
	and analysis, refers to the literature	insufficiently, or lacks overall justification	lab manual.	specific points or questions posed in the
	when appropriate, and demonstrates	of error. Address most of the specific		lab manual.
	accountability by providing justification	points or questions posed in the lab		
	for any errors. Address all specific	manual.		
	questions posed in the lab manual.			
References	All sources (information and graphics)	All sources are accurately documented,	All sources are accurately documented,	All sources are accurately documented
	are accurately documented in consistent	but format is not consistent. Some	but many are not in consistent format.	but not directly cited in the text.
	format.	sources are not accurately documented.	Most sources are not directly cited in the	,
		,	text.	

Appendix 2: Guidelines on the structure of Formal Report

A. GENERAL INSTRUCTIONS:

- 1. Be prepared for your laboratory work; study the Manual beforehand and read up the theory.
- 2. No marks will be given for copied material and/or copied reports.
- 3. Be relevant in content, concise in expression and correct in the use of English. Grades will depend on the quality of the report, not quantity.
- 4. The formats set out below will be used to record all laboratory experiment. If there are modifications or special requirements for a particular experiment, your Supervisor will give you the necessary instructions.

B. FORMAL REPORTS:

Assume that your reader is a *fellow student* who is not familiar with the specific work you are reporting. It consists of the following sections.

1. Title Page

Should include Title of Experiment, Name, Group Number, and Date of lab experiment

2. Aim

Describe the objectives of the experiment.

- 3. Abstract
- 4. Principles

This section prepares the reader to understand the report.

5. Equipment and Materials

Give a brief description of the equipment and materials you used. If detailed descriptions are required, they should be placed in the *Appendix*. Illustrations by *simple diagrams* may save you a long description. Provide titles and label your diagrams clearly and refer to them in your text by using a clear numbering system (eg. Fig. 1 A Pressure Transducer).

6. Procedure

Describe briefly in the correct sequence the important aspects of the procedure you adopted to conduct the experiment and obtain the results, explaining any modifications you have made to the instructions in the Manual. Use the *past tense* to report on the procedure.

7. Results

This section usually includes

- (a) observations;
- (b) sample calculation(s); and
- (c) results of your calculation (tabulated and/or presented graphically).

To present your data or results clearly, make sure that proper titles or lead-in statements are used and appropriate explanations are given. Some types of laboratory work are descriptive and the results will not be quantitative, hence, you may describe the key observations and results in prose paragraphs. Some experiments are required to use assigned software to process data and plot graphs.

8. Discussion (not more than five pages)

In this section, you discuss the findings and results of your work. You might want to explain any differences between your measurements and theoretical predictions by comparing the theoretical curve with the experimental curve. You might want to account for any errors and suggest improvements through modification to the experiment/project equipment, procedure or precautions to be taken. You may draw deductions from the results.

9. Conclusion

Briefly (not more than half a page) present the conclusions you have reached as a result of your work; or state to what extent the objectives of the project have been met. It is not a repetition of the *Discussion* but a statement of the key point(s) or inferences logically deduced from the results and discussions.

10. Appendix

Any detailed technical information, for example, the theory and derivations, description of equipment referred to but not put in the main text, will be appended at the end of the report. It should also include all graphs, tables etc. not directly needed in the main sections of your report but which may be useful information for the reader. The appendices are lettered in the order in which they are mentioned in the text (Eg. Appendix A) and labelled with appropriate titles, (Eg. Appendix A. Method Used to Calibrate Pressure Transducer).

C. USE OF GRAPHIC ILLUSTRATIONS IN REPORT WRITING

- 1. Graphics provide important illustrations in technical reports. They are classified and numbered as *Tables* and *Figures*. Both tables and figures can be incorporated into the text of the report or attached under the Appendix section, according to their relative importance.
- 2. Tables are used to record data taken from readings or to present quantitative findings. They are hence numbered and referred to exclusively as tables. For example: Table 1 Results of fiberglass impellers endurance test at variable rpm
- 3. Figures include all other illustrations used in the report, such as diagrams, schematics, flow charts, statistical charts, graphs and photographs. They should be numbered clearly according to their order of appearance in the report. For example:
 - Fig. 1 Test rig with three degrees of freedom
 - Fig. 2 Flow chart of instruments used in the experimental set up
 - Fig. 3 Lateral force spectra at difference angles of incidence
- 4. In the use of graphic illustrations in the report, the following points should be observed:
 - (i) All tables and figures must be numbered.
 - (ii) A title should be devised (in a noun phrase) for every table/figure.
 - (iii) Every illustration should be complete with proper legends and labels.
 - (iv) Units used must be accurate and where possible. SI Units should be used.
 - (v) Scales for the figures should be appropriately devised. For example, to allow comparison of results, the scales of four graphs can be reduced so as to be able to display them within the same page.
 - (vi) An illustration used in the text should be well integrated with a lead-in sentence or phrase in front. For example:
 - Figure 1 illustrates the forces on a triangular building for a given wind direction.
 - Figure 2 shows the test rig which allows a semi-rigid model to oscillate.
 - Figure 3 shows a flow chart of the instruments used in the collection of data. The variations of tip displacements with reduced velocity are shown in Figures 4 to 6.
 - (vii) Relevant explanations or interpretations should immediately follow the illustrations.
 - (viii) Illustrations used in the appendices should be mentioned in the text so that proper reference can be made.
- 5. A sample figure used as an illustration in a report is attached.

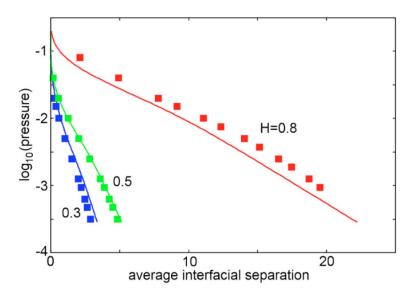


Fig. 1 Comparison between experimental and theoretical data on the relationship between applied squeezing pressure and average interfacial separation.