

COURSE CONTENT

Academic Year	2023/2024	Semester	2				
Course Coordinator	Asst. Prof. Tej Salil (Asst. Prof. Tej Salil Choksi / Dr. Poernomo Gunawan					
Course Code	CH2123	CH2123					
Course Title	Chemical Thermody	Chemical Thermodynamics					
Pre-requisites	CH1104 Materials & Energy Balances, CB1117 Engineering Mathematics, CH1108/CH2108 Thermodynamics						
No of AUs	3						
Contact Hours	26 hours lecture, 12 hours tutorial						
Proposal Date	4 Oct 2021						

Course Aims

This course aims to teach you thermodynamics at a more advanced level, to study thermodynamics concepts and principles in relation to open flow systems, ideal and non-ideal gas and liquid mixtures, and to apply them on chemical engineering processes, in particular, thermodynamics cycles, liquefaction, phase equilibria and chemical equilibria.

Intended Learning Outcomes (ILO)

Upon completion of the course, you should be able to:

- 1. Apply the laws of thermodynamics to develop and evaluate the performance of thermodynamics cycles.
- 2. Develop and derive mathematical correlations among thermodynamics properties for ideal and non-ideal gas and liquid mixtures.
- 3. Apply thermodynamics principles of mixtures/solutions on phase and chemical equilibria.

Course Content

- 1. Review of basic laws and concepts of thermodynamics;
- 2. Joule-Thompson effect, thermodynamics efficiencies of turbine, pump, and compressors;
- 3. Thermodynamics analysis and interpretation of phase diagrams;
- 4. Thermodynamic analysis of refrigeration, gas liquefaction, and Rankine cycle;
- 5. Partial molar properties, chemical potential and concept of fugacity;
- 6. Thermodynamics principles of ideal and non-ideal gas mixtures: residual properties, Gibbs-Duhem theorem, and fugacity coefficient;
- 7. Thermodynamics principles of ideal and non-ideal solution: excess properties, Lewis-Randal rule, and activity coefficient;
- 8. Phase equilibria: Raoult's law and modified Raoult's law, bubble points and dew points calculations;
- 9. Chemical reaction equilibria.

Assessment (includes both continuous and summative assessment)

Component	Course LO Tested	Related Programme LO	Weighting	Team /Individual	Assessment rubrics
	LO Testeu	or Graduate Attributes		/marviadar	Tubilos
Continuous Assessment: Quiz #1	1	EAB-SLO a), b),	20%	Individual	Appendix 1
Continuous Assessment: Quiz #2	2,3	EAB-SLO a), b), c)	20%	Individual	Appendix 1
Continuous Assessment: Class Participation #1	1	EAB-SLO a), b), c), d)	5%	Individual	Appendix 2
Continuous Assessment: Class Participation #2	2,3	EAB-SLO a), b), c), d)	5%	Individual	Appendix 2
Final examinations (2 hours, Open Book, exam paper not allowed to be removed from exam hall)	1, 2, 3	EAB-SLO a), b), c)	50%	Individual	Appendix 1
Total	•	•	100%		

Mapping of Course ILOs to EAB Graduate Attributes

Course Intended	urse Intended Cat		EAB's 12 Graduate Attributes*										
Learning Outcomes	Cat	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(I)
	Core	•	•	•	•								
Apply the laws of thermodynamics to develop and evaluate the performance of thermodynamics cycles									a, b), C			
Develop and derive mathematical correlations among thermodynamics properties for ideal and non-ideal gas and liquid mixtures								leal	a, b), C			
Apply thermodynamics p	rinciples	of mi	xtures	/soluti	ons or	n phas	se and	chem	ical e	quilibri	а	a, b,	c, d

Legend: Fully consistent (contributes to more than 75% of Intended Learning Outcomes)

• Partially consistent (contributes to about 50% of Intended Learning Outcomes)

Weakly consistent (contributes to about 25% of Intended Learning Outcomes)

Blank Not related to Student Learning Outcomes

Formative feedback

- a) Feedback for the assignment will be returned to the students.
- b) After each quiz, the solutions will be posted on NTUlearn and students are welcome to set a consultation to address their doubts and misconception.

Learning and Teaching approach

Approach	How does this approach support students in achieving the learning outcomes?
Lecture	Lectures would primarily discuss the fundamentals and concepts of

	thermodynamics, as well as demonstrate the procedures of deriving and solving mathematical equations.
Tutorial	Tutorial questions comprise relevant applications of the concepts introduced in lectures. Students are encouraged to have discussion with the instructor to clarify doubts and to explore cases beyond the tutorial questions.

Reading and References

- 1) Smith J.M., Van Ness H C and Abbott MM, "Introduction of Chemical Engineering Thermodynamics", McGraw Hill, 7th Edition in SI Units (2005)
- 2) S. I. Sandler, "Chemical and Engineering Thermodynamics", 2nd Edition, Wiley, (2001).
- 3) J.R. Elliot and C.T. Lira, "Introductory Chemical Engineering Thermodynamics", 1st edition, Prentice Hall PTR, (1999).

Course Policies and Student Responsibilities

General: You are expected to complete all online activities and take all scheduled assignments and tests by due dates. You are expected to take responsibility to follow up with course notes, assignments and course related announcements. You are expected to participate in all tutorial discussions and activities.

Continuous assessments: You are required to attend all continuous assessments. The continuous assessments have two components, weekly polls, and a homework. Both the polls and homework are graded with respect to completion and not for correct/wrong answers. These assessments are meant to help you stay up to date with what is going on every week,

Absenteeism: Continuous assessments make up a significant portion of students' course grade. Absence from continuous assessments without officially approved leave will result in no marks and affect your' overall course grade.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the academic integrity website for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Course Instructors

Instructor	Office Location	Phone	Email
Tej Salil Choksi	N1.2-B1-18	63168940	tej.choksi@ntu.edu.sg
Poernomo Gunawan	N1.2-B2-21	69081988	pgunawan@ntu.edu.sg

Planned Weekly Schedule

Week	Topic	Course LO	Readings/ Activities
1	Review of the first and second laws of	1	Smith Van Ness
	thermodynamics		Chapters 1, 2, 5
2	Ideal work, irreversible work, Joule- Thompson effect, thermodynamics analysis of turbine, pump, and compressors.	1	Smith Van Ness Chapters 5, 7
3	Non-adiabatic turbines/compressors, irreversible processes, flashing	1	Smith Van Ness Chapters 5, 7
4	Thermodynamic analysis of Rankine cycle.	1	Smith Van Ness Chapter 8
5	Thermodynamic analysis of refrigeration cycles	1	Smith Van Ness Chapter 9
6	Thermodynamic analysis of gas liquefaction processes	1	Smith Van Ness Chapter 9
7	Partial molar properties, Gibbs-Duhem theorem.	2	Smith Van Ness Chapter 11
8	Chemical potential and concept of fugacity.	2	Smith Van Ness Chapter 11
9	Thermodynamics analysis of ideal and non-ideal gas mixtures: residual properties, Gibbs-Duhem theorem, and fugacity coefficient.	2	Smith Van Ness Chapter 11
10	Thermodynamics analysis of ideal and non-ideal solution: excess properties, Lewis-Randall rule, and activity coefficient.	2	Smith Van Ness Chapter 11
11	Activity coefficient models (Margules, Van Laar, NRTL), phase equilibria (Raoult's law, modified Raoult's law).	2	Smith Van Ness Chapter 12
12	Thermodynamics analysis of chemical equilibria: reaction coordinate, heat of reaction and Gibbs free energy of	3	Smith Van Ness Chapter 13

	reaction.		
13	Thermodynamics analysis of chemical equilibria: equilibrium constant, vant Hoff equation, Le Chatelier principle.	3	Smith Van Ness Chapter 13

Appendix 1: Assessment Criteria for Quiz and Final Examination

<u>Criteria</u>	<u>Unsatisfactory:</u>	Borderline: 40% to	Satisfactory: 50% to	Very good: 70% to	Exemplary: >90%
	<u><40%</u>	<u>49%</u>	<u>69%</u>	<u>89%</u>	
Develop and	Unable to formulate	Able to formulate the	Able to formulate the	Able to formulate	Excellent
evaluate the	the problem, unable	problem, able to	problem, able to	the problem, able to	understanding of the
performance of	to construct and	<u>interpret</u>	<u>interpret</u>	<u>interpret</u>	problem, good
thermodynamics	evaluate the	thermodynamics phase	thermodynamics phase	thermodynamics	interpretation of
cycles	efficiencies of basic	diagrams but having	diagrams and to use	phase diagrams and	thermodynamics
	thermodynamics	difficulty to construct	them to construct and	to use them to	phase diagrams and
	cycles and do not	and evaluate the	evaluate the	construct and	able to translate
	know how to use	efficiencies of basic	efficiencies of basic	evaluate the	<u>complex</u>
	and interpret thermodynamics	thermodynamics cycles.	thermodynamics	efficiencies of complex	thermodynamics cycles on multiple
	phase diagrams (P-	<u>cycles.</u>	<u>cycles.</u>	thermodynamics	phase diagrams
	H, T-S, P-V			cycles.	phase diagrams
	diagrams)			<u>cycles.</u>	
Develop	Unable to formulate	Able to formulate the	Able to formulate the	Able to formulate	Good understanding
mathematical	the problem, unable	problem and to	problem and to	the problem and to	of the problem and
correlations among	to identify which	identify which	identify which	identify which	the correlations
thermodynamics	thermodynamics	thermodynamics	thermodynamics	thermodynamics	among
properties for ideal	properties are	properties are involved	properties are	properties are	thermodynamics
and non-ideal gas	involved and do not	but do not know how	involved, able to write	involved, able to use	properties, know
and liquid mixtures	know how to	to develop	their mathematical	their mathematical	their limitations and
1	develop appropriate	mathematical	relationships.	relationship	how to combine
	mathematical	thermodynamics		correctly to solve	with materials &
	thermodynamics	equations to solve the		mixing problems.	energy balances to
	equations to solve	problems.			solve complex
	the problems.				mixing problems.
Apply	Unable to apply the	Able to apply the	Able to apply the	Able to apply the	<u>Excellent</u>
thermodynamics	concepts of phase	concepts of phase	concepts of phase	concepts of phase	understanding of
principles of	equilibria to	equilibria to construct	equilibria to construct	equilibria to	phase equilibrium
mixtures/ solutions	construct phase	phase equilibrium	phase equilibrium	construct phase	for ideal and non-
on phase equilibria	<u>equilibrium</u>	diagram for ideal	diagram for ideal	equilibrium diagram	ideal mixtures,
	diagram; unable to	mixtures; know how to	mixtures; know how to	for ideal and non-	including
	calculate bubble and	correctly interpret the diagram, but having	correctly interpret the	ideal mixtures;	homogeneous and
	dew points for ideal and non-ideal	diagram, but having difficulty in	diagram as well as to calculate bubble and	know how to correctly interpret	heterogeneous
	mixtures, and do not	calculating bubble and	dew points for ideal	the diagram as well	azeotropes.
	know how to	dew points for ideal	mixtures.	as to calculate	
	correctly interpret	mixtures.	mixtures.	bubble and dew	
	the phase	mixtures.		points for ideal and	
	equilibrium			non-ideal mixtures.	
	diagram.				
Apply	Unable to determine	Able to determine	Able to determine	Able to determine	Excellent
thermodynamics	correlations between	correlations between	correlations between	correlations between	understanding on the
principles on	thermodynamics	thermodynamics	thermodynamics	thermodynamics	problem, able to
chemical equilibria	properties and	properties and	properties and	properties and	solve problems to
_	<u>equilibrium</u>	equilibrium constant	equilibrium constant	<u>equilibrium</u>	determine
	constant; unable to	but having difficulty to	and able to develop	constant; able to	<u>equilibrium</u>
	set up mathematical	write mathematical	<u>mathematical</u>	<u>develop</u>	compositions for
	equations to solve	equations to solve for	equations to solve for	mathematical	multiple reactions,
	for equilibrium	<u>equilibrium</u>	<u>equilibrium</u>	equations to solve	as well as to perform
	compositions and	compositions and	compositions and	for equilibrium	analysis on the
	reaction coordinate.	reaction coordinate.	reaction coordinate for	compositions and	<u>equilibrium</u>
			single reaction.	reaction coordinate	compositions with
				for single and	regard to changes in
				multiple reactions.	the process
L	l	l			conditions.

Appendix 2: Assessment Criteria for Class Participation

Class participation will be gauged by weekly online polls and by submitting the homework. These polls serve as a self-evaluation tool for the student, and help the faculty gauge the pulse of the class in terms of effectiveness of the learning. Points are awarded for participation and submitting the homework, regardless of whether the answers are correct/wrong.

<u>Criteria</u>	<u>Grade</u>
Polls: at least 5/6 submitted	5% (Full points)
HW: All questions had a strong	
attempt, the HW is complete.	
Polls: less than 5/6 answered	3%
HW: All questions had a strong	
attempt, the HW is complete.	
HW: One of more questions	0%
with a weak/no-attempt. The	
homework is considered	
incomplete. Such incomplete	
homeworks will get a 0	
regardless of the number of	
polls addressed.	

Appendix 3: The EAB (Engineering Accreditation Board) Accreditation SLOs (Student Learning Outcomes)

- a) **Engineering knowledge:** Apply the knowledge of mathematics, natural science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems
- b) **Problem Analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c) **Design/development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- d) **Investigation:** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e) **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- f) **The engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- g) **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for the sustainable development.
- h) **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i) **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- j) Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- k) Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and economic decision-making, and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long Learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change