

COURSE CONTENT

Academic Year	2024/2025	Semester	1 and 2					
Course Coordinator	Assoc Prof. Kunn	n Hadinoto Ong / [Dr. Poernomo Gunawan					
Course Code	CH4801							
Course Title	Final Year Desigr	n Project						
Pre-requisites	Core Chemical Engineering Subjects (Materials & Energy Balances Fluids System, Thermodynamics, Chemical Reaction Engineering, Chemical Engineering Unit Operations, Heat & Mass Transfer)							
No of AUs	8		· · · · · · · · · · · · · · · · · · ·					
56 hours of lectures, 12 hours of tutorials, 260 hours practical								
Proposal Date	14 January 2020		B					
Course Aims								
principles and economic diagram with the aid of working on a capstone p to write good technical re Intended Learning Out 1) Apply the principles of thermodynamics, ch design and operation	evaluation methods computer simulation project, students will be eports and effective p comes (ILO) chemical engineerin memical reaction eng n of chemical plants. hoot problems by pe aking tools. mulation tools as an a age project as a team	to design a chem n software. In add be able to manage presentations. ng (material and er gineering, unit op erforming in-depth aid in solving the o n to its successful	completion.					
Course Content 1. Introduction to ch 2. Introduction to pr 3. Process flowshee 4. Process design h 5. Computer-aided 6. Thermodynamics 7. Review on chemi 8. Review on separation	ocess simulation sof et synthesis neuristics design s model selection ical reactor design	tware						

Assessment (includes both continuous and summative assessment)

Component	Course LO Tested	Related Programme LO or Graduate Attributes	Weighting	Team /Individual	Assessment rubrics
Continuous Assessment – Group project (70%)	1, 2, 3, 4, 5	EAB SLO's a, b, c, d, e, f , g, h, I , j, k	70%	Team	Appendix 1
Peer evaluation	4	EAB SLO's i	Moderating factor in final report		Appendix 1
Continuous Assessment – Quizzes (30%)	1, 2	EAB SLO's a, b, c	30%	Individual	Appendix 1
Total	•		100%		

Mapping of Course ILOs to EAB Graduate Attributes

Course Intended Cat EAB's 12 Graduate Attributes*													
Learning Outcomes	Cat	(a)	(b)	(C)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(I)
	Core	•	•	•	•	•	•	•	•	•	•	•	
1) To apply the principles of chemical engineering (material and energy balances, transport phenomena, thermodynamics, chemical reaction engineering, unit operations, and process safety) in the design and operation of chemical plants.								a, b, c					
2) To identify and troubleshoot problems by performing in-depth analysis, root- cause investigation and applying decision making tools.							b, c,	d, f, (g, h				
3) To aptly use process simulation tools as an aid in solving the design problems.								е					
4) To undertake and n	nanage	proje	ct as	a tear	n to it	s suco	cessfu	ul com	npletio	on.		i, j, k	
5) To write good techr	nical rep	orts a	and gi	ve eff	ective	pres	entati	on.				j	

Legend: • Fully consistent (contributes to more than 75% of Intended Learning Outcomes) • Partially consistent (contributes to about 50% of Intended Learning Outcomes) š Weakly consistent (contributes to about 25% of Intended Learning Outcomes) Blank Not related to Student Learning Outcomes

Formative feedback

Instructor's feedback on the reports and presentation will be given to the students.

Approach	How does this approach support students in achieving the learning outcomes?					
Lecture	Lectures would primarily review the fundamentals and principles of chemical engineering and discuss examples of their applications in industrial practices. In- class exercises and discussion would be carried out to enable students' participation in class.					
Tutorial	Tutorials would involve hands-on practice on the process simulation software to solve given problem statements.					
 W. D. Sei New York R. Turton, <u>Design of</u> E. L. Cuss York, 200 Course Polic General: Stuc and tests by c assignments discussions a Continuous as Absenteeism: 	R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, <u>Analysis, Synthesis, and</u> <u>Chemical Processes</u> , Prentice Hall, Upper Saddle River, New Jersey (1998). Ser and G. D. Moggridge, <u>Chemical Product Design</u> , Cambridge University Press, New 1. ies and Student Responsibilities lents are expected to complete all online activities and take all scheduled assignment due dates. Students are expected to take responsibility to follow up with course notes and course related announcements. Students are expected to participate in all tutoria nd activities. ssessments: Students are required to attend all continuous assessments. Continuous assessments make up a significant portion of students' course grade a continuous assessments without officially approved leave will result in no marks and s' overall course grade.					
student relies of values sha NTU's shared As a student, the principles maintaining a yourself with traud, collusio go to the <u>acac</u>	nic work depends on honesty and ethical behaviour. The quality of your work as on adhering to the principles of academic integrity and to the NTU Honour Code, a se ared by the whole university community. Truth, Trust and Justice are at the core of values. It is important that you recognize your responsibilities in understanding and applyin of academic integrity in all the work you do at NTU. Not knowing what is involved in cademic integrity does not excuse academic dishonesty. You need to actively equi strategies to avoid all forms of academic dishonesty, including plagiarism, academic on and cheating. If you are uncertain of the definitions of any of these terms, you shoul demic integrity website for more information. Consult your instructor(s) if you need any pout the requirements of academic integrity in the course.					

Course Instructors

Instructor	Office Location	Phone	Email
Kunn Hadinoto Ong	N1.2-B2-31	65148381	KunnOng@ntu.edu.sg
Poernomo Gunawan	N1.2-B2-26A	69081988	Pgunawan@ntu.edu.sg

Planned Weekly Schedule

Week	Topic	Course LO	Readings/ Activities
1	Introduction to chemical process design	1, 2	
2	Thermodynamics model selection	1, 2	
3	Process flowsheet synthesis	1, 2	
4	Process design heuristics	1, 2	
5	Review on reactor design (part 1)	1, 2	
6	Review on reactor design (part 2)	1, 2	
7	Review on separation process design (part 1)	1, 2	
8	Review on separation process design (part 2)	1, 2	
9	Heat integration (part 1)	1, 2	
10	Heat integration (part 2)	1, 2	
11	Heat integration (part 3)	1, 2	
2-13	Tutorials on process simulation software	3	

Appendix 1: Assessment Criteria

Froup no:		0 - No contribution	
	Member Names	5 - Full contribution	Justification for grade
		Contribution to the project (0-5)	
Yourself:			
Member 1:			
Member 2:			
Member 3:			
Member 4:			
Member 5:			
Member 6:			
Member 7:			

<u>Criteria</u>		Borgerline.	Satisfactory:	Verv good.	Exemplary: >
	Unsatisfactor v: <40%				
chemical engineerin g t principles in the t design and e operation r of chemical 7 plant c	<u>y: <40%</u> The plant design does not achieve the desired output; technically and economically not viable. The design does not apply the correct chemical engineering principles.	Borderline: 40% to 49% The plant design does not achieve the desired output; technically and economically not viable. The selection of unit operations and the operating parameters are lacking of strong and reasonable justifications.	Satisfactory: 50% to 69% The plant design achieves the desired output but it may not be technically and economically viable. The selection of unit operations and the operating parameters are lacking of strong and reasonable justifications.	Very good: 70% to 89% The plant design achieves the desired output, technically and economically viable. The selection of unit operations and the operating parameters are based on plausible heuristics, and supported by reasonable justifications.	Exemplary: > 90% The plant design achieves the desired output, technically and economically viable. It proposes creative solutions to the problem. The selection of unit operations and the operating parameters are based on plausible heuristics, and supported by strong and

Develop process flowsheet with the aid of simulation tool	The flowsheet is lacking of essential unit operation/pro cess; The process simulation does not reach convergence; Mass and energy balances are not conserved.	The flowsheet is lacking of essential unit operation/pro cess; The process simulation reaches convergence; Mass and energy balances are conserved.	The flowsheet comprises essential unit operation/pro cess; The process simulation reaches convergence; Mass and energy balances are conserved.	The flowsheet comprises essential unit operation/pro cess; The process simulation is not robust enough to accommodat e parameters changes in the flowsheet; Mass and energy balances are conserved.	The flowsheet comprises essential unit operation/pro cess; The process simulation is robust to accommodat e parameters changes in the flowsheet; Mass and energy balances are conserved.
Technical report writing	The report is poorly written with many errors, poor grammar and sentence structures; The content of the report is incoherent, lacking of data, in- depth analysis and recommenda tions.	The report is not very well written with some errors; The content of the report is coherent, but missing essential data, lacking of in-depth analysis and recommenda tions.	The report is written with good grammar and sentence structures; The content of the report is coherent, addresses the problem with essential data, but lacking of in- depth analysis and recommenda tions.	The report is succinctly written with good grammar and sentence structures; The content of the report is coherent, addresses the problem clearly with essential data, brief analysis and recommenda tions	The report is succinctly written with good grammar and sentence structures; The content of the report is coherent, addresses the problem clearly with sufficient data and plausible in- depth analysis and recommenda tions.

Appendix 2: The EAB (Engineering Accreditation Board) Accreditation SLOs (Student Learning Outcomes)

- a) **Engineering knowledge:** Apply the knowledge of mathematics, natural science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems
- b) **Problem Analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c) **Design/development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- d) **Investigation:** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e) **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- f) **The engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- g) **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for the sustainable development.
- h) **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i) **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- j) Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- k) Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and economic decision-making, and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long Learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change