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S-CNN: Subcategory-Aware Convolutional
Networks for Object Detection

Tao Chen

Abstract—The marriage between the deep convolutional neural network (CNN)
and region proposals has made breakthroughs for object detection in recent
years. While the discriminative object features are learned via a deep CNN for
classification, the large intra-class variation and deformation still limit the
performance of the CNN based object detection. We propose a
subcategory-aware CNN (S-CNN) to solve the object intra-class variation
problem. In the proposed technique, the training samples are first grouped into
multiple subcategories automatically through a novel instance sharing maximum
margin clustering process. A multi-component Aggregated Channel Feature
(ACF) detector is then trained to produce more latent training samples, where
each ACF component corresponds to one clustered subcategory. The produced
latent samples together with their subcategory labels are further fed into a CNN
classifier to filter out false proposals for object detection. An iterative learning
algorithm is designed for the joint optimization of image subcategorization,
multi-component ACF detector, and subcategory-aware CNN classifier.
Experiments on INRIA Person dataset, Pascal VOC 2007 dataset and MS
COCO dataset show that the proposed technique clearly outperforms the
state-of-the-art methods for generic object detection.

, Shijian Lu, and Jiayuan Fan

Index Terms—Subcategory, object detection, convolutional neural network, ACF
detector, subcategory-aware CNN
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1 INTRODUCTION

OBJECT detection is one fundamental problem in computer vision
research. One major challenge in object detection is large intra-class
variations in object appearance and deformation, as illustrated in
Fig. 1, where the two typical object classes both present large intra-
class variations due to different viewpoints, partial occlusions, clut-
ters, etc. Different object detection techniques have been reported
including the widely investigated Adaboosting based Aggregated
Channel Features (ACF) detector [1], [2] and Histogram of Gradients
(HoG) based Deformable Parts Models (DPM) [3], [4], [5]. The ACF
detector is fast but often susceptible to object viewpoint changes
and deformations. The DPM detector solves the object deformation
problem to certain degrees, but often fails to deal with many free-
form objects that do not have a well-defined part structure.
Motivated by the powerful convolutional neural network (CNN)
in object recognition [6], [7], the object detection using region pro-
posals followed by CNN classification has gained significant perfor-
mance improvement in recent years [8], [9], [10], [11], [12]. Several
representative models such as R-CNN [8], Fast R-CNN [9] and
Faster R-CNN [10] have achieved the state-of-the-art results and
clearly outperformed the ACF and DPM based methods on several
benchmark datasets, including PASCAL VOC [13] and ILSVRC
[14]. The success of Fast/Faster R-CNN can be attributed to the
supervised deep CNN that learns the discriminative convolutional
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features, and the region proposal that generates a large number
of object candidates, e.g., selective search [15] in R-CNN and Fast
R-CNN and region proposal network (RPN) [10] in Faster R-CNN.

More recently, another class of methods which do not rely on
object proposals as in R-CNN but directly learn to regress the
object bounding boxes from the convolutional feature maps have
been reported in [16], [17]. The You Only Look Once (YOLO)
method [17] computes a global feature map and uses a fully-
connected layer to predict detections in a fixed set of regions. The
Single Shot MultiBox Detector (SSD) [17] extends this single shot
idea further by adding multiple scales of feature maps and using a
convolutional filter at each scale for prediction.

Though the aforementioned methods have made great success
in object detection recently, they still suffer from three typical limi-
tations as listed.

First, the current methods using region proposals and single
shot boxes train a monolithic CNN model to represent an object
category. As object of the same category may experience very large
variation due to different camera capturing viewpoints, object
deformations and occlusions, a single CNN model may not have
sufficient capacity to capture all these object appearance variations.
Different non-CNN based methods have been proposed to address
the large intra-class variation problem, which typically partition
images into a number of more compact and homogeneous subcate-
gories via maximum margin based support vector machines (SVM)
[18], [19], graph shift [20], image incongruence [21], spectral clus-
tering [22], etc. Promising results have been achieved in object
detection [21], [22], [23] and object recognition [18], [19], [20] which
validates the usefulness of the subcategorization approach.

Second, the selective search in R-CNN/Fast R-CNN [9] and
default bounding boxes in SSD [17] both produce a large amount
of false alarms which increase the computational cost greatly but
lead to little performance gain in the ensuing CNN classification
and regression. The major reason is that both selective search and
default bounding box generation are unsupervised which involve
little category-level supervised information. The Faster R-CNN
[10] trains a region proposal network to generate object proposals
which reduces false alarms and speeds up the detection process
greatly. But the RPN under the framework of Faster R-CNN uses
only one scale of feature map which may produce miss detections
when the objects in images have very different sizes.

Third, current region proposal and single shot based detection
methods train the object proposal generator (RPN in Faster
R-CNN) and CNN classifier/regressor (R-CNN and SSD) in a sin-
gle round. On the other hand, better object detection performance
can be achieved through an iterative scheme, which continuously
refines the determined proposal regions and the learned new CNN
classifier/regressor until certain optimization target is met.

We propose a subcategory-aware deep convolutional network
i. e. S-CNN to address the large object intra-class variation prob-
lem. To the best of our knowledge, this is the first work that inte-
grates image subcategorization with CNN for accurate and robust
object detection. Though a multiview CNN model has been devel-
oped in [12] which uses the object viewpoint to subcategorize
images to train viewpoint-dependent CNNs, the model cannot be
generalized to generic object detection where objects often suffer
from various occlusions, clutters, deformations, etc. The proposed
S-CNN has three major contributions as described below.

First, it designs an instance-sharing maximum margin cluster-
ing (MMC) algorithm and a subcategory-aware CNN that relieve
the large intra-class variation in object detection effectively. The
instance-sharing MMC allows one training sample to be shared by
two neighboring subcategories, and accordingly helps to learn
more robust and representative subcategory models. The subcate-
gory-aware CNN employs a newly designed softmax objective
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Fig. 1. lllustration of the large intra-class variation due to different viewpoints,
object deformation, occlusion, clutters, etc.

function that treats all positive subcategories equally important
and differentiates them from the negative category using different
weights. The trained S-CNN has demonstrated better discrimina-
tive capability with superior object detection performance as evalu-
ated over a number of public datasets.

Second, a multi-component ACF detector is designed to
address the false alarm and inaccurate object localization issues.
In particular, the multi-component ACF detector employs multi-
ple component detectors each of which is trained using images
within one clustered subcategory. It can therefore produce pro-
posals with better localization accuracy and fewer false alarms,
leading to better S-CNN classification and object detection perfor-
mance. Compared with the RPN that uses one single scale of fea-
ture map, the multi-component ACF detector works on multi-
scale feature pyramids and can detect objects with different sizes.
Additionally, it can produce latent samples (The term of latent is
used as the samples are produced by detector instead of human
labelling) with different overlapping scores with the ground truth.
These latent samples can be fused with other training data which
greatly help for better subcategory clustering, ACF detector learn-
ing and CNN training.

Third, an iterative learning scheme is designed to optimize the
learned multi-component ACF detector and the S-CNN continu-
ously for better object detection performance. The more diversified
latent samples as produced by the ACF detector enrich the training
data greatly, which are feed-forwarded to the instance-sharing
MMC clustering for generating new subcategories and further
training more discriminative ACF detector and S-CNN iteratively.
The learning iteration automatically terminates when the S-CNN
training score converges.

The remaining of the paper is organized as follows. Section 2
describes the proposed S-CNN technique including the instance
sharing clustering, the multi-component ACF detector, the subcate-
gory-aware CNN training, and the iterative joint training of ACF
and S-CNN. Section 3 presents experiments on three public data-
sets including the INRIA Person dataset, the Pascal VOC 2007 data-
set, and the MS COCO dataset. Some concluding remarks are
finally drawn in Section 4.

2 THE PROPOSED METHOD

Fig. 2 shows an overview of the proposed S-CNN system. During
the training stage, the training samples are first clustered into mul-
tiple subcategories by using the proposed instance sharing cluster-
ing algorithm. A multi-component ACF detector is then learned
and further applied on the original training images in each subcate-
gory to produce latent samples. A S-CNN model is then trained by
combining the clustered training samples and the generated latent
samples which also produces a detection score according to the
ground-truth object boxes. The generated latent samples are fur-
ther fed back to the instance-sharing MMC clustering for another
round of ACF and S-CNN training until the S-CNN detection score
converges. During the testing stage, a test image is first forwarded
to the multi-component ACF detector to generate a preliminary set
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of proposals. The objects of interest are then detected by filtering
out false alarms using the trained S-CNN.

2.1 Instance Sharing Maximum Margin Clustering

MMC [18], an extension of the supervised large margin theory
(e.g., SVM) to the unsupervised scenario, aims to cluster the visu-
ally similar samples into the same category as much as possible. It
optimizes the linear models learned for each category and simulta-
neously classifies each sample into its corresponding category,
often leading to more compact clusters than other graph or proba-
bility based methods [20], [22].

The standard MMC clusters each sample image into a single
cluster, which often introduces two typical problems while training
an object detector by using each generated image cluster. The first
is related to impaired robustness and representation capability of
the trained detectors. In particular, detectors trained using images
from neighboring clusters may all produce flat detection scores for
ambiguous samples that lie around the boundary of the neighbor-
ing clusters. This will lead to miss detections when the maximum
of the produced flat detection scores is lower than a predefined
threshold. The second is related to clustering imbalance where
some generated cluster may have a very small number of samples.
Training a detector using such ultra-small cluster can easily lead to
overfitting and further miss detections while applying it to new
test images.

We propose an instance sharing MMC technique to address the
two constraints. By allowing sample sharing among neighboring
clusters, the trained detectors are more robust and representative
which have better chance (as compared with detectors trained
using non-sharing clusters) to produce high detection scores for
those ambiguous samples lying around the boundary of the neigh-
boring clusters. Meanwhile, the sample sharing addresses the clus-
ter imbalance effectively where ultra-small clusters will get more
training samples from the neighboring clusters. This relieves the
overfitting of the trained detectors and leads to better detections
when applying the trained model to new test images. Note similar
idea has been explored in [24] where features of neighboring object
viewpoints are shared for robust object pose estimation.

Suppose {x;}/, denote a set of training samples from an object
category, where M is the sample number. The instance sharing
MMC tries to solve the following objective,
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where W = {w;}/", denote the optimal linear models of the K
subcategories, Y = {y;.},i=1,..,M,k=1,.., K denote the sub-
category assignment of the A/ training samples, where y;; =1
indicates that the i-th training sample is clustered into the k-th
subcategory. The = {¢;;},i=1,..., M,j = 1,..., K denote the slack
variables to allow soft margin, and C' is the trade-off parameter.
The first constraint in Eq. (2) thus enforces a large margin
between subcategories by requiring the response score of x; to the
assigned subcategory to be sufficiently larger than that of x; to
other subcategories.

The second last constraint enforces each positive training sam-
ple to be assigned to either one or two subcategories. We tested dif-
ferent numbers of sharing subcategories, and found that the
optimal performance is usually obtained when this number is set
at two. The last constraint ensures that the clustered subcategory is
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Feedback latent samples to clustering for iterative ACF and S-CNN learning
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Fig. 2. Overview of the proposed subcategory-aware CNN learning for object detection.

balanced with a moderate sample size. The lower bound L and
upper bound U of each subcategory size are set at 0.94L and 1.1
respectively, based on the experiments.

When new images are collected for clustering, the pre-trained
linear models W can be directly applied to determine their subcate-
gory assignments as follows,

k = arg maxwy x 3)
ASTN

where x denotes the feature representation of a newly collected
image.

2.2 Multi-Component ACF Detector Learning

The original ACF detector [1] resizes training images to a number
of aspect ratios (from 0.3 to 3) and trains one ACF component
detector by using the training images of one specific aspect ratio. In
addition, the sample images of one specific aspect ratio are resized
to different scales (0.5 to 2 of the original scale) to train one compo-
nent detector. Further, 32 pyramid levels are implemented for each
training image to learn the feature pyramid [25]. The training is a
4-round boosting process, where each round contains 32, 128, 512
and 2048 decision trees respectively. The boosting improves the
discriminative capability of the learned decision trees greatly.

One major constraint of the original ACF detector is that it trains
each component detector by resizing all training images to one
specified aspect ratio. On the other hand, the resizing often intro-
duces severe object distortion that affects the proposal performance
[26]. We propose a multi-component ACF detector that first clus-
ters all training images into a number of subcategories and then
trains a component detector by using images within one clustered

subcategory. Compared with the training images of one specific
aspect ratio (as employed in the original ACF), the subcategory as
produced by the proposed instance sharing clustering is more
compact and representative which often leads to more discrimina-
tive and accurate component detector. Experiments show that the
proposed multi-component ACF detector produces less false
alarms and can localize object proposals more accurately as com-
pared with the original ACF as well as those state-of-the-art pro-
posal methods such as edge box and selective search (to be
discussed in Section 3.3).

Three data sources are combined to enrich the training samples
for the training of the multi-component ACF detector and S-CNN as
illustrated in Fig. 3. The first is the ground truth boxes. Considering
that some subcategories may contain a limited number of training
samples, data augmentation by image translation, rotation and mir-
roring [27] is applied on the ground truth training samples to gener-
ate more training images. The second source is ACF detected latent

ACF detector
learning
CNN classifier
. learning

Combined image samples

Fig. 3. Image sources for both ACF detector and CNN learning.
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samples which are detected throughout the iterative training process.
The latent training samples are selected according to the Intersection
over Union (IoU) score [3] between the detected rectangles and the
ground truth rectangles. In particular, a positive sample is deter-
mined if the IoU is above 0.8 and an negative sample is determined if
the IoU is below 0.3. The last data source is edge box proposals which
remain the same throughout the iterative training process. The edge
box is used due to its high detection recall. Similar to the second data
source, a positive sample is determined if the IoU is above 0.8 and a
negative sample is determined if the IoU is below 0.3.

2.3 Subcategory-Aware CNN

The S-CNN is learned for each object category to determine
whether a region proposal contains the specified object or not. The
three data sources as described in last section constitute the train-
ing samples within each subcategory for the S-CNN learning. The
randomly sampled negatives from the original images and nega-
tives as detected by ACF detector and edge box constitute the nega-
tive category. It is therefore a typical K + 1-way classification
problem with K positive subcategories and 1 negative category.
Compared with the 2-way binary CNN model that is trained by
treating all positive samples as one single category, the K + 1-way
S-CNN model trained by clustering the positive samples into K
multiple subcategories is more representative for the visually
diversified positive samples and has better discriminative capabil-
ity between the positive and negative classes.

We adopt the VGG-16 layer network structure [28] trained on
the ImageNet dataset as the base network. The base network is fine
tuned by using the subcategory images to learn the S-CNN, where
the output of the last fully-connected layer is changed from 1000-
way to a K + 1-way softmax. All the positive and negative traning
samples are resized to 224 x 224 pixels, mean-subtracted and
divided by their standard deviation, and further propagated
through VGG network layers to produce a probability distribution
over K + 1 classes. The class that produces the highest probability
score is treated as the training sample’s belonging (sub)category.
The “Dropout” [29] strategy which sets the output of each hidden
neuron to zero with probability of 0.5 is used in the first two fully-
connected layers.

As this work focuses on object detection instead of object sub-
categorization, we propose a new softmax function to discriminate
the K positive subcategories from the negative category. The idea
is to assign equal weight to the K positive subcategories while dif-
ferent weight to the negative category as follows:

1,2, ..., K)logp®
(4)

+ Iy = 0)log (1 — (p“”))}

where J is the softmax loss, I() is the indicator function,
y =1,2,.... K indicates that the test sample z;,7 = 1,..., N is clas-
sified into one of the K positive subcategories, y¥) = 0 indicates
that the test sample x; is classified into the negative category,
logp'”) is the weight assigned to positive subcategories, and p{”) is
the probability score of a test sample belonging to the defined
object category which is defined as,

(i) _ (i) 5
p g P ©)

where

= k7 (6)
S exp(ay)

where ai.i ) is the output of unit & in the CNN’s last fully connected
layer for the sample ;. The decision score of test sample z; is
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therefore determined by the maximum of the output of the K sub-
category units in the CNN’s last fully connected layer. The loss
function in Eq. (4) is minimized by the stochastic gradient descent
(SGD) [30] with a learning rate of 0.001, a batch size of 256 samples
and a momentum of 0.9.

2.4 Joint Learning of Multi-Component
ACF Detector and S-CNN

Motivated by the bootstrapping in ACF learning, we train the multi-
component ACF detector and S-CNN in an iterative manner for bet-
ter object detection performance. During each iteration, a number of
image subcategories are first produced through the instance-
sharing MMC clustering of the current training samples. A multi-
component ACF detector is then trained based on the produced
image subcategories, which is further applied on the original train-
ing images (where the training samples are cropped) to detect new
training samples. These samples are finally incorporated to train a
better S-CNN based on the proposed softmax function.

The iterative learning can therefore be viewed as a data aug-
mentation approach which detects more training samples to train
more representative and discriminative ACF detector and S-CNN
model iteratively. In particular, the ACF detected training samples
in each iteration are filtered based on their overlaps with the
ground truth boxes (as described in Section 2.2). As the learning
iteration moves on and more latent training samples are incorpo-
rated, the learned multi-component ACF detector becomes more
accurate in object localization and false alarm suppression, and the
trained S-CNN becomes more discriminative in object candidate
classification. The learning iteration terminates automatically
according to the convergence of the detection score of the trained
S-CNN, e.g., the average precision [31] for the VOC2007 dataset or
the FPPI [32] for the INRIA Person dataset.

During the testing stage, a test image is first forwarded to the
multi-component ACF detector to produce a number of object can-
didates. The produced object candidates are then fed to the trained
S-CNN to filter out false alarms. Non maximum suppression
(NMS) is finally applied to remove those repeated detections with
lower CNN scores (p')), and keep only detections with the highest
S-CNN scores.

3 EXPERIMENTS

3.1 Datasets and Evaluation Criteria

INRIA Person Dataset. The INRIA Person dataset [33] is one most
popular person dataset containing 1805 64 x 128 images of humans
cropped from a varied set of personal photos. The persons appear
in any orientation with partial occlusions and a wide range of var-
iations in pose, appearance, clothing, illumination and back-
ground. It therefore has very large intra-class variations and is
suitable to evaluate the proposed S-CNN method.

Pascal Visual Object Classes Challenge 2007. The famous Pascal
Visual Object Classes Challenge 2007 (VOC2007) dataset consists
of 9,963 images with 24,640 annotated objects from 20 object classes
[31]. We follow the approach in [8] to split it into a training set and
a testing set, which are used to train and evaluate classification
models, respectively..

Microsoft COCO Detection Dataset. The Microsoft COCO object
detection dataset [34] contains 80 object categories. We follow [10]
to use 80k images for training, 40k images for validation, and 20k
images for testing.

Evaluation Criteria. For the INRIA dataset, we follow the evalua-
tion criteria in [32] and use the log-average miss rate (MR) between
102 and 10° false positives per image (FPPI) for evaluation. For the
VOC2007 dataset, we follow the [8] and use the mean average pre-
cision (mAP) as the evaluation criterion. For both datasets, a detec-
tion is treated as a true positive only if the IoU between the
detection box and the groundtruth box is greater than 0.5. For the
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TABLE 1
Comparison of Different Techniques on
the INRIA Person Dataset

Methods Log-average miss rate ( %)
Fast ACF [1] 17
VeryFast [35] 16
Subcategory + ACF [22] 14
R-CNN [8] 8
S-CNN_sm 6
S-CNN 4

MS COCO dataset, the mAP averaged for IoU € [0.5 : 0.05 : 0.95]
and denoted as mAP@[0.5, 0.95], and mAP@0.5 (PASCAL VOC’s
metric) are reported.

The system run on a workstation with Intel core i7-5960X CPU
3.00 GHz, NVIDIA GTX-Titan GPU, and 64 GB RAM.

3.2 Experimental Results
3.2.1 Results on the INRIA Person Dataset

For the INRIA person dataset, we compare the proposed S-CNN
with several state-of-the-arts including the original fast ACF detec-
tor [1], the very fast person detector using geometric context [35],
the subcategory combined with ACF detector method in [22] and
the typical R-CNN in [8]. In addition, we compare the new softmax
function as defined in Eq. (4) with the conventional softmax func-
tion (S-CNN_sm) [7] under the same S-CNN framework. The num-
ber of subcategories K is set as 6 and the iteration number (for
the learning of subcategories, multi-component ACF detector, and
S-CNN) is set at 400 based on experiments.

Table 1 shows experimental results. It can be seen that the pro-
posed S-CNN achieves the lowest miss rate among all compared
methods. In particular, it outperforms the subcategory-aware ACF
detector and the standard R-CNN by 10% and 4%, respectively.
This shows the superiority of the proposed S-CNN that jointly
learns subcategories, multi-component ACF detector and S-CNN
classifier in an end-to-end and iterative manner. Further, it can be
seen that the S-CNN using the new softmax function achieves
lower miss rate as compared with that using the conventional soft-
max function. This demonstrates the better discriminative capabil-
ity of the proposed softmax function which treats all the positive
subcategories as equally important and differentiates them from
the negative category with different weights as defined in Eq. (4).

3.2.2 Results on the VoC2007 Dataset

For the VOC2007 dataset, the S-CNN is compared with several
state-of-the-art methods including the standard DPM [3], selective
search proposal with bag-of-words classifier [15], RegionLet [36],
R-CNN [8], Fast R-CNN [9], Faster R-CNN [10], single shot multi-
box detection with 300 x 300 input image size (SSD300) and
512 x 512 input size (S5D512) [16]. The YOLO method [17] is
not compared here as its performance is below that of Fast/Faster
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TABLE 3
Object Detection Results (%) on the MS COCO Dataset

Methods mAP@0.5 mAP@[0.5, 0.95]
Fast R-CNN [9] 35.9 19.7
Faster R-CNN [10] 42.7 21.9
SSD512 [16] 46.5 26.8
S-CNN 49.5 29.6

R-CNN and SSD on the VOC2007 datset. Similar to the INRIA
dataset, the new softmax function is compared with the conven-
tional softmax function (5-CNN_sm in Table 2) under the same S-
CNN framework. The subcategory number is set at 6.

Table 2 shows experimental results. It can be seen that the pro-
posed S-CNN outperforms the state-of-the-art methods including
Fast/Faster R-CNN and SSD and achieves the best mAP score of
72.4 percent. In addition, the S-CNN using the new softmax func-
tion outperforms that using the conventional softmax function,
and this validates the effectiveness of the newly designed softmax
function. Further, it can also be seen that the S-CNN achieves better
performance improvement for those object categories with larger
intra-class variation such as car, cat, cow, dog, person and sheep.
This further validates the effectiveness of the proposed S-CNN in
dealing with large intra-class variations.

3.2.3 Results on the MS-COCO Dataset

For the MS-COCO dataset, we compare the S-CNN with state-of-
the-art methods including Fast R-CNN, Faster R-CNN and SSD512
[16]. The S-CNN similarly uses 6 subcategories as used for the
VOC2007 dataset. Table 3 shows experimental results. It can be
seen that the proposed S-CNN achieves a mAP@0.5 of 49.5 percent
and a mAP@[0.5,0.95] of 29.6 percent, which are 3 and 2.8 percent
higher than SSD512, respectively. The 3 percent performance
improvement on the MS COCO dataset is much larger than the
0.8% improvement on the VOC2007 dataset. This can be explained
by the fact that objects in the MS-COCO dataset have smaller sizes,
and SSD may miss small objects due to the lower resolution of its
top layer. The proposed S-CNN can relieve this problem by using
the multi-scale feature pyramids and multi-scale scanning win-
dows in the ACF detector.

3.3 Discussion

We investigate the contribution of the three S-CNN components
including the instance-sharing subcategory generation, the multi-
component ACF detector, and the iterative S-CNN training. The
INRIA and PASCAL VOC datasets are selected for experiments.

3.3.1 Subcategory Generation

We compare the proposed instance sharing MMC with several sub-
category generation methods including the original MMC without
instance sharing [18], the image incongruence [21], graph shift [20],

TABLE 2
Average Precision (%) of Different Object Detection Methods on the VoC2007 Dataset

plane bicycle bird board bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mean
SS-BoW [15] 435 465 104 12.0 93 494 537 394 125 369 422 264 470 524 235 121 299 363 422 488 33.8
DPM_v5 [3] 332 603 102 161 273 543 582 23.0 20.0 24.1 26.7 127 581 482 432 120 21.1 36.1 46.0 43.5 33.7
RegionLet [36] 542 520 20.3 24.0 20.1 555 687 426 19.2 442 49.1 26.6 570 545 434 164 36.6 37.7 59.4 52.3 41.7
R-CNN [8] 734 770 634 454 446 751 781 79.8 405 737 622 794 781 731 642 356 668 672 704 71.1 66.0
Fast [9] 745 783 69.2 532 36.6 773 782 820 40.7 727 679 79.6 792 730 690 30.1 654 702 758 65.8 66.9
Faster [10] 700 806 701 573 499 782 80.4 820 522 753 672 803 79.8 750 763 39.1 683 673 81.1 67.6 69.9
SSD300 [16] 734 775 641 59.0 389 752 80.8 785 46.0 678 692 76.6 821 770 725 412 642 69.1 78.0 68.5 68.0
SSD512 [16] 751 814 69.8 608 463 82.6 84.7 84.1 485 750 67.4 823 839 794 766 449 699 69.1 781 71.8 71.6
S-CNN_sm 761 725 641 502 438 76.6 849 852 428 80.6 632 83.6 82.6 812 796 371 772 649 732 75.6 69.8
S-CNN 784 755 712 543 452 80.1 882 872 47.6 83.6 66.1 843 834 832 812 382 802 673 751 77.6 724
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TABLE 4
Investigation of Using Different Data Sources for Multi-Component
ACF Detector Learning. GT: Ground Truth Rectangles; GTT: Ground
Truth Transformations; ACF_DP: Latent Positives as Detected by
ACF Detectors; Edge_BP: Edge Box Detected Object Proposals
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Fig. 4. Experimental results of different clustering methods under different subcat-
egory numbers on the INRIA dataset.

spectral clutering [22] and discriminative subcategory [19] and
evaluate them using different numbers of subcategories.

Figs. 4 and 5 show experimental results on the INRIA dataset
and the VOC2007 dataset, respectively. As the two figures show,
the proposed instance-sharing MMC consistently achieves the best
performance on both datasets when different numbers of subcate-
gories are implemented. In addition, all methods perform better
when more than one subcategory is used, and the best improve-
ment is up to 5 percent as compared with no subcategorization
(i.e., when K = 1 as shown in Figs. 4 and 5). This demonstrates the
effectiveness of subcategorization which relieves the intra-class
variation and improves the object detection performance consis-
tently. Further, all compared methods converge when the subcate-
gory number goes beyond 6 and we therefore set it at 6 as
described in Section 3.2. Note that the optimal subcategory number
varies with the intra-class variation of different object classes and a
larger number of subcategories is typically needed when the object
class has larger intra-class variation.

3.3.2  Multi-Component ACF Detector Training

We evaluate the contribution of different object proposal methods
for the multi-component ACF detector training. Different combina-
tions of data sources are studied including the ground truth boxes
(GT), the ground truth boxes plus their transformation (GTT), the
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Fig. 5. Experimental results of different clustering methods under different subcat-
egory numbers on the Pascal VoC 2007 dataset.

Methods Log-average miss rate  mAP on Pascal
(%) on INRIA dataset VoC 2007 dataset
GT + Edge BP 9.0 65.2
GTT + Edge BP 7.5 66.3
GT + ACF_DP 7.0 67.6
GTT + ACF_DP 6.5 69.1
GT + ACF_DP + Edge BP 4.5 70.6
GTT + ACF_DP + Edge BP 4.0 72.4

edge box proposal (Edge BP), and the latent samples as detected
by the ACF detector (ACF_DP).

Table 4 shows experimental results. It can be seen that using
ACEF proposals consistently outperforms using edge box proposals
and this demonstrates the power of using ACF detector for object
proposal. In addition, the including of edge box proposals helps to
improve the object detection performance clearly, largely due to its
high proposal recall. Further, the model achieves the best perfor-
mance when all proposals including GTT, Edge_BP, and ACF_DP
are used. This shows that these data sources are complementary
and their combination produces more representative object pro-
posals which further enhance the representation and discrimina-
tion capability of the trained S-CNN.

3.3.3 S-CNN Learning

We also study the the joint iterative learning of ACF detector and
S-CNN. Fig. 6 shows the miss rates under different numbers of learn-
ing iterations with/without the dropout layer on the INRIA dataset.
It can be seen that the S-CNN keeps performing better with the
increase of learning iterations with or without the dropout. This
clearly shows that the proposed iterative learning approach can
improve both the generated subcategories and the trained S-CNN. In
addition, it can be seen that using dropout helps to improve the object
detection performance greatly, and it also requires a larger number of
learning iterations to converge. This validates the effectiveness of
dropout for relieving the S-CNN overfitting while having limited
training data. Furthermore, it is found that the learning iteration con-
vergence number is different for different object categories and it typ-
ically ranges from 100 to 300 iterations for the Pascal VoC dataset.

3.3.4 Timing Analysis

For the INRIA dataset, it is found that the multi-component ACF
detector takes around 0.1 seconds on average to extract 50-100
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S-CNN learning iteration numbers

Fig. 6. S-CNN person detection performance for the INRIA person dataset under
different numbers of learning iterations
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proposals from each image. The S-CNN takes another 0.5 to
1 seconds to extract the convolutional features from the detected
proposals. The S-CNN therefore needs around 0.6-1.1 seconds for
processing of one image. For the VOC2007 dataset, the computa-
tion time is around 0.5 to 1 seconds on average which is similar to
that for the INRIA dataset. For the MS COCO dataset, the S-CNN
needs around 1 seconds on average.

4 CONCLUSIONS

This paper presents a subcategory-aware CNN technique for
object detection. A novel instance-sharing MMC algorithm is
designed which clusters sample images into a number of subcate-
gories to relieve the large intra-class variation issue. It allows the
neighboring subcategories to share samples and accordingly
improves the robustness and representation capability of the
multi-component ACF detector. In addition, a S-CNN training
method is designed which employs a new loss function to capture
the multiple subcategories information and helps to improves the
object detection performance. Furthermore, an iterative learning
scheme is developed which repeats the instance-sharing MMC,
the multi-component ACF detector learning and the subcategory-
aware CNN training until the object detection score converges.
The iteration improves the multi-component ACF detector and
CNN iteratively by including more useful latent training samples
that are detected in each training iteration. The proposed S-CNN
has been evaluated over three public datasets including the
INRIA person dataset, the VOC2007 dataset, and the MS COCO
dataset. Experiments demonstrate superior object detection per-
formance of the S-CNN as compared with state-of-the-art techni-
ques such as Fast/Faster R-CNN and SSD.
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