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Deep Coupled ResNet for Low-Resolution
Face Recognition
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Abstract—Face images captured by surveillance cameras are of-
ten of low resolution (LR), which adversely affects the performance
of their matching with high-resolution (HR) gallery images. Exist-
ing methods including super resolution, coupled mappings (CMs),
multidimensional scaling, and convolutional neural network yield
only modest performance. In this letter, we propose the deep cou-
pled ResNet (DCR) model. It consists of one trunk network and
two branch networks. The trunk network, trained by face images
of three significantly different resolutions, is used to extract dis-
criminative features robust to the resolution change. Two branch
networks, trained by HR images and images of the targeted LR,
work as resolution-specific CMs to transform HR and correspond-
ing LR features to a space where their difference is minimized.
Model parameters of branch networks are optimized using our
proposed CM loss function, which considers not only the discrim-
inability of HR and LR features, but also the similarity between
them. In order to deal with various possible resolutions of probe
images, we train multiple pairs of small branch networks while
using the same trunk network. Thorough evaluation on LFW and
SCface databases shows that the proposed DCR model achieves
consistently and considerably better performance than the state of
the arts.

Index Terms—Convolutional neural network (CNN), coupled
mappings (CMs), feature extraction.

I. INTRODUCTION

FACE recognition (FR) has been a very active research area
due to increasing security demands, commercial applica-

tions and law enforcement applications [1]–[3]. Promising re-
sults have been achieved under challenging conditions, such
as occlusion [4], variations in pose, and illumination [5]. While
many FR approaches have been developed for recognizing high-
resolution (HR) face images [6]–[8], there are few studies fo-
cused on FR in surveillance systems, where HR cameras are not
available or there is a long distance between the camera and the
subject. Under the condition of low-resolution (LR) images, FR
approaches developed for HR images usually decline [2], [9].
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It is still a challenge to recognize faces when only LR probe
images are available.

Here, we focus on the LR face recognition (LRFR) problem
of matching LR probe face images with HR gallery images.
Most of the approaches proposed for this task can be generally
divided into two categories. One is to reconstruct the HR probe
image from the LR one by super-resolution (SR) techniques
and use it for classification. Although SR-based methods, such
as [10]–[13], can generate visually appealing HR images, they
are computationally expensive and not optimized for recogni-
tion purposes; thus, the results can be further improved [2],
[14]–[16].

The other category is to simultaneously transform the LR
probe and corresponding HR gallery images into a common fea-
ture subspace where the distance between them is minimized.
Li et al. [2] propose to learn two matrices that project the face
images with different resolutions into a unified feature space,
where the difference between the LR image and its HR coun-
terpart is minimized. Based on the idea of linear discriminant
analysis, several discriminant subspace methods are proposed
in [17]–[19]. Instead of using linear methods, Ren et al. [20]
project the LR and HR face images into an infinite common
subspace by minimizing the dissimilarities captured by kernel
Gram matrices. Multidimensional scaling (MDS) is employed
in [14] to simultaneously transform the features from the poor
quality probe images and the high-quality gallery images in the
manner that their distances approximate those between gallery
images. The same authors propose a reference-based approach
for reducing the computational cost in [21]. Two discriminative
MDS methods are proposed in [16] to make full use of identity
information, including both interclass and intraclass distances.
Their new objective function is claimed to enlarge the interclass
distances to ensure discriminability.

In general, subspace-based methods achieve better recogni-
tion performance than SR-based methods. However, subspace-
based methods usually extract pixel values or scale-invariant
feature transform from images as feature representations. Their
performance can be boosted by using feature representations
that are robust to the resolution change. Motivated by the supe-
rior performance of convolutional neural networks (CNN) [22],
Zeng et al. [15] train a deep convolutional network, resolution-
invariance CNN (RICNN), to learn resolution invariant features
in a supervised way by mixing the real HR images with the up-
sampled LR ones. Although RICNN improves the performance
of LRFR, it is sensitive to resolution change of probe images as
indicated in [16].

In this letter, we propose a CNN-based approach, the
deep coupled ResNet (DCR) model, to solve above-mentioned
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Fig. 1. Architecture of the proposed DCR model. The trunk network learns discriminant features (indicated by v) shared by different resolutions of images, and
the branch networks are trained as CMs (indicated by x for HR features and z for LR features, respectively). C, P, and F indicate convolutional layer, max-pooling
layer, and fully-connected layer, respectively. The number of output feature maps in convolutional layers and the number of outputs in fully connected layers are
indicated by those on top of each layer. “×h” represents a residual module that repeats for h times. k indicates the resolution of LR training images and β is a
scaling parameter for center loss.

problems in LRFR. The novelty and contribution of the DCR
model come from following four aspects.

1) The DCR model consists of one big trunk network and
two small branch networks.

2) The trunk network is trained only once to learn discrim-
inant features shared by face images of different res-
olutions. It is constructed based on recently proposed
residential modules [23].

3) Two branch networks are trained to learn resolution-
specific coupled-mappings (CMs) so that HR gallery im-
ages and LR probe images are projected to a space where
their distances are minimized. A CM loss is proposed to
optimize model parameters of branch networks.

4) In reality, there can be various resolutions of probe im-
ages to be matched with HR gallery images, the proposed
DCR model solves this problem by training multiple pairs
of small branch networks (2 MB for each pair) while us-
ing the same big trunk network (105 MB). Resolution
indicator methods [24] can be employed to determine the
resolution of probe images and which branch network to
be used.

II. DCR MODEL

A. Architecture of DCR

The key of LRFR is to extract the feature that is robust to
resolution change and to measure the similarity between the
HR gallery image and the LR probe image. Recently, CNN
has been widely used for feature learning in FR and excellent
performances have been achieved as in [23] and [25]. This mo-
tivates us to employ CNN in learning discriminative features
shared by different image resolutions and in deriving CMs to
minimize the distance between the HR gallery image and the
LR counterpart of a specific resolution. The architecture of the
proposed DCR model is shown on Fig. 1. It consists of one
trunk network and two branch networks. The trunk network is
designed to extract discriminant face features that are robust to
the resolution degradation of face images. Two branch networks
are trained to learn CMs, which minimize the distance between

feature vectors extracted by the trunk branch from an HR image
and its corresponding LR image of a specific resolution k.

The trunk network of the proposed DCR model is constructed
based on the CNN model in [8] and the ResNet model pro-
posed in [23]. Different from previous CNN architectures such
as VGG, ResNet in [23] consists of residual modules, which
conduct additive merging of signals. He et al. [23] argue that
residual connections are inherently important for training very
deep architectures. ResNet has become a seminal work, demon-
strating that the degradation problem of deep networks can be
solved through the use of residual modules. As shown in Fig. 1,
the trunk network takes raw pixels of face images as input. C,
P, and F indicate convolutional layer, max-pooling layer, and
fully-connected layer, respectively. The kernel size of convolu-
tion layers is 3 × 3 with stride 1 and the kernel size of max-
pooling layers is 2 × 2 with stride 2. Each convolutional layer
is followed by a PReLU [26] nonlinear unit. The number of
output feature maps in convolutional layers and the number of
outputs in fully connected layers are indicated by those on top
of each layer. “×h” represents a residual module that repeats
for h times.

The output feature vector v of the second last fully-connected
layer in the trunk network forms input of the branch networks.
The HR feature vector and its LR counterpart are fed into the
branch networks in pair. Each branch network consists of two
fully-connected layers and one PReLU unit in the middle. Thus,
the CMs are formed as two nonlinear mappings. Output feature
vectors of the first fully-connected layers (x and z) are taken as
the feature representations for HR and LR images, respectively.
The trunk network outputs feature representations that are robust
to the resolution change of face images. Its model size is around
105 MB. The branch network reduces the distance between the
HR feature and its LR counterpart of a specific resolution. Its
model size is around 2 MB, 1.9% of the whole model.

B. Training Strategy and CM Loss

The recently released CASIA-WebFace [27] database is used
to train the proposed DCR model. The 434 793 images of 9067
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Fig. 2. Example face images from CASIA-WebFace.

subjects, which contain at least 14 images per subject, compose
the training set. Face images are normalized to 112 × 96 pixels
with an affine transformation according to the coordinates of
five sparse facial points, i.e., both eye centers, the nose tip, and
both mouth corners. We employ an off-the-shelf face alignment
tool [28] for facial point detection. Some example face images
are shown in Fig. 2. A two-step training strategy is adopted
to effectively optimize parameters of the DCR model. In the
first step, the trunk network is trained using face images of
three significantly different image resolutions, 112 × 96, 40 ×
40, and 6 × 6, so that it can be applied to the feature extraction of
images whose resolution varies from 112 × 96 to 6 × 6. Similar
to [15], images are first down-sampled to LR images. After that,
LR images are rescaled to the required input size of the network
using bicubic interpolation before being fed to the network for
training. In our case, the required size of input images is 112 ×
96. This process effectively makes the LR images the blurred
HR images. The joint supervision of softmax loss and center
loss [8] Lt is used to train the trunk network as

Lt = −Σ3m
i=1 log

eW T
y i

v i +dy i

Σn
j=1e

W T
j v i +dj

+ βΣ3m
i=1 ||vi − cv

yi
||22 (1)

where m is the number of training samples of the same resolution
and n indicates the number of subjects in the training data. vi

indicates the feature vector extracted by trunk network from the
ith training image. Wj denotes the jth column of the weights
W in the last fully-connected layers of trunk networks, and d
is the bias item. yi is the class label for the ith sample and cv

yi

denotes the yi th class center of deep features v. β is a scaling
factor.

In the second step, model parameters of the trunk network
remain unchanged and two branch networks are trained using
HR images (112 × 96) and LR images of similar resolution to
that of the targeted LR probe images. The CM loss function is
proposed to supervise the training of branch networks.

In the training process of branch networks, we first expect to
maximize the distances between each face image and its neigh-
bors from different classes within HR or LR features. The soft-
max loss defined in the following equation facilitates interclass
separation:

Ls = −Σm
i=1 log

eU T
y i

x i +by i

Σn
j=1e

U T
j x i +bj

− Σm
i=1 log

eV T
y i

zi +ay i

Σn
j=1e

V T
j zi +aj

(2)
where xi and zi indicate the feature vectors extracted by branch
networks from the ith HR and LR images, respectively. Uj , Vj

denote the jth column of the weights U, V in the last fully-
connected layers of branch networks, and a, b are the bias items,
for HR feature and its LR counterpart, respectively.

In order to preserve intraclass compactness, we minimize the
distances between each face image and its neighbors from the
same class within HR or LR features. The center loss defined in

the following equation minimizes the intraclass variations:

Lc = Σm
i=1 ||xi − cx

yi
||22 + Σm

i=1 ||zi − cz
yi
||22 (3)

where cx
yi

and cz
yi

denote the yi th class centers of HR features
x and LR features z, respectively.

For the task of LRFR, it is important to ensure the consistency
between the LR feature and corresponding HR feature. Specifi-
cally, the final LR and corresponding HR feature vectors should
be as close as possible. This can be achieved by minimizing the
Euclidean loss defined in

Le = Σm
i=1 ||xi − zi ||22 . (4)

Considering the above three criteria, the CM loss used for
optimizing parameters of branch networks is constructed as:

LC M = Ls + λLc + αLe (5)

where λ and α are two scaling factors used for balancing three
loss functions. In this way, not only the discriminability of HR
and LR features are taken into account, but also the relationship
between HR and corresponding LR features.

C. Matching Face Images

Once the training is finished, both HR gallery images and LR
probe images can be fed into DCR to obtain their feature repre-
sentations. Face verification or identification can be performed
by computing their similarities. The big trunk network contains
98.1% of parameters of the whole DCR model, whereas small
branch networks contain 1.9% of all DCR parameters. In real
applications, probe images captured by surveillance cameras
can be of many different LRs. Thus, multiple pairs of branch
networks are trained in DCR to deal with different resolutions
of LR probe images. Hence, multiple branch networks greatly
increase the effectiveness and efficiency of the DCR model to
match HR images to different resolutions of probe face images.

III. EXPERIMENTS

Extensive experiments are conducted on LFW [29] and
SCface [30] databases to evaluate the proposed DCR model
for matching LR probe images with HR gallery face images.
Both LFW and SCface databases are widely-used benchmarks
for FR in unconstrained environments. On LFW, the face ver-
ification performance of DCR is compared with VGGFace
[25], LightCNN [31], ResNet [8], and their fine-tuned versions,
VGGFace-FT, LightCNN-FT, and ResNet-FT, respectively. We
fine-tune the pre-trained models by the same LR training data
for the same number of epochs as in the training process of the
DCR model. The open-source deep learning toolkit Caffe [32]
is utilized to fine-tune the deep models. During fine-tuning, the
batch size is set to 128. The models are fine-tuned with de-
scending learning ratios and the fine-tuning stops when the loss
does not decrease any more. Moreover, to evaluate the effec-
tiveness of the proposed branch network for other networks, we
replace the trunk network with LightCNN and VGGFace, and
name the obtained models as Coupled-LightCNN and Coupled-
VGGFace, respectively. Furthermore, the performance of the
trunk network trained by face images of three different reso-
lutions is also reported for comparison. Different sizes of LR
probe images are used for testing. Note that different sizes of
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TABLE I
FACE VERIFICATION ACCURACY OF DIFFERENT APPROACHES USING

DIFFERENT PROBE SIZES ON LFW

Probe size 8 × 8 12 × 12 16 × 16 20 × 20 112 × 96

LightCNN [31] 67.7 78.3 86.9 92.7 98.9
LightCNN-FT 70.3 79.3 88.9 92.9 98.8
Coupled-LightCNN 80.0 85.1 90.2 93.5 99.0

VGGFace [25] 75.0 82.6 89.3 93.4 97.7
VGGFace-FT 82.3 88.6 92.7 94.8 98.2
Coupled-VGGFace 83.7 88.9 93.1 95.2 98.3

ResNet [8] 72.7 84.1 92.3 95.4 98.7
ResNet-FT 88.9 93.8 95.9 96.8 98.8
Trunk network 92.2 93.6 95.5 96.8 98.4
DCR (coupled-trunk) 93.6 95.3 96.6 97.3 98.7

face images are rescaled to the required input size of the net-
work using bicubic interpolation before being fed to the network
for feature extraction. On SCface, besides the above-mentioned
nine CNN models, four state-of-the-art LRFR approaches, MDS
[14], [21], DMDS, LDMDS [16], and RICNN [15], are also used
for comparison with the DCR model. The values of β in (1), λ

and α in (5) are set to 0.008 in all experiments.

A. Experiments on LFW

The LFW database contains 13 233 images of 5749 subjects.
Images in this database exhibit rich intrapersonal variations of
pose, illumination, and expression. LFW has been extensively
studied for the research of unconstrained FR in recent years.
We follow the “Unrestricted, Labeled Outside Data Results”
protocol in [29] and compute the mean verification accuracy by
the tenfold cross-validation scheme on the View 2 data. Face
images are normalized and aligned using same methods as on
CASIA-WebFace images. For two images in the face verifica-
tion paradigm, we take the first one as HR (112 × 96) gallery
image and down-sample the second one to 8 × 8, 12 × 12,
16 × 16, or 20 × 20 as the LR probe image. Same sizes of
CASIA-WebFace images are used for training of corresponding
branch networks. The same face images are used for the fine-
tuning of LightCNN, VGGFace, and ResNet models. PCA and
cosine distance are used to calculate the similarity between two
features. The total scatter matrix of PCA is computed using the
nine training folds of LFW data in the tenfold cross validation.
Face verification accuracies of VGGFace [25], VGGFace-FT,
Coupled-VGGFace, LightCNN [31], LightCNN-FT, Coupled-
LightCNN, ResNet [8], ResNet-FT, the trunk network and the
proposed DCR model on LFW are shown in Table I. In the
last column, the accuracies for HR probe images of the same
resolution as gallery images are also presented.

B. Experiments on SCface

The SCface database contains images of 130 subjects taken in
uncontrolled indoor environment using five video surveillance
cameras of various qualities. For each subject, there are 15 im-
ages taken at three distances (five images at each distance),
4.20 m (d1), 2.60 m (d2), and 1.00 m (d3), by surveillance
cameras, and one frontal mugshot image taken by a digital

TABLE II
FR RATES OF DIFFERENT APPROACHES AT DIFFERENT DISTANCES ON SCFACE

Distance d1 d2 d3

MDS [14], [21] 60.3 66.0 69.5
DMDS [16] 61.5 67.2 62.9
LDMDS [16] 62.7 70.7 65.5
RICNN [15] 23.0 66.0 74.0

LightCNN [31] 35.8 79.0 93.8
LightCNN-FT 49.0 83.8 93.5
Coupled LightCNN 50.5 85.0 94.0

VGGFace [25] 41.3 75.5 88.8
VGGFace-FT 46.3 78.5 91.5
Coupled-VGGFace 62.3 91.0 94.8

ResNet [8] 36.3 81.8 94.3
ResNet-FT 54.8 86.3 95.8
Trunk network 52.0 89.5 96.3
DCR (Coupled-ResNet) 73.3 93.5 98.0

camera. Following the experimental settings in [16], frontal
mugshot images are employed as gallery images and images
taken by surveillance cameras at distance di, i = 1, 2, 3 are
used as probe images. We take CASIA-WebFace images of size
112 × 96 as HR images and those of 112 × 96, 30 × 30, and 20
× 20 as LR images for training of branch networks at distance of
d3, d2, and d1, respectively. Same as in [16], 50 out of 130 sub-
jects in the SCface database are randomly chosen for fine-tuning
of the branch networks and training of PCA. Rest of the subjects
are for testing. Thus, there is no identity overlap between the
training and test sets. The same face images from CasiaWebface
and SCface datasets are used for the fine-tuning of LightCNN,
VGGFace, and ResNet models. The nearest-neighbor classifier
is used to classify all probe images. We report the FR rates
of MDS [14], [21], DMDS, LDMDS [16], RICNN [15], VG-
GFace [25], VGGFace-FT, Coupled-VGGFace, LightCNN [31],
LightCNN-FT, Coupled-LightCNN, ResNet [8], ResNet-FT, the
trunk network and the proposed DCR model on Table II.

We can observe from Tables I and II that: First, the branch
network greatly increases the performance of LightCNN, VG-
GFace, and the trunk (ResNet) networks; second, the proposed
DCR model achieves much higher FR accuracy than the state-
of-the-art methods consistently for different resolutions of probe
images on LFW and SCface datasets. The performance gain is
significant for very LR probe images.

IV. CONCLUSION

In this letter, we propose a novel CNN-based approach named
as the DCRN model for the task of LRFR. It first extracts dis-
criminative features shared by face images of different resolu-
tions by a ResNet-like network, the trunk network. After that,
CMs are learned by branch networks to project features of HR
images and corresponding LR images of a specific resolution
into a common subspace where their distance is minimized.
Experiments on LFW and SCface datasets show that the pro-
posed DCR model achieves consistently and considerably better
performance than the state of the arts.
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