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Abstract—In a spliced blurred image, the spliced region
and the original image may have different blur types. Splicing
localization in this image is challenging when a forger uses image
resizing as anti-forensics to remove the splicing traces anomalies.
In this paper, we overcome this problem by proposing a method
for splicing localization based on partial blur type inconsistency.
In this method, after the block-based image partitioning, a local
blur type detection feature is extracted from the estimated local
blur kernels. The image blocks are classified into out-of-focus or
motion blur based on this feature to generate invariant blur type
regions. Finally a fine splicing localization is applied to increase
the precision of regions boundary. We can use the blur type
differences of the regions to trace the inconsistency for the splicing
localization. Our experimental results show the efficiency of the
proposed method in the detection and the classification of the
out-of-focus and motion blur types.

I. INTRODUCTION AND BACKGROUND

Using the professional photo-editing tools, image tamper-
ing can be performed easily. Since images can be used in
journalism, police investigation and as court evidences, image
tampering can be a threat to the security of people and our
society. Image splicing is one of the most common types of
image tampering. In splicing of the blurred images, if the
original image and the spliced region have different blur types,
e.g., out-of-focus and motion, an inconsistency in the blur
types of different regions may appear in the tampered image.

We focus on the detection of such kind of inconsistency for
splicing localization in a blurred image. However, the forger
may remove the anomaly introduced by the traces of splicing
and make the image visually pleasant by resizing the tampered
image into a smaller size. Such operation removes the artifacts
used by many existing techniques to make the detection of
splicing difficult. In this paper, we address this problem by
targeting the partial blur type inconsistency detection which is
almost robust to with after image resizing.

Fig.1 (a) shows an authentic image with out-of-focus blur
and (b) a spliced image generated by splicing a motion blurred
region in image (a). The spliced region with motion blur
indicates the camera movement with respect to the scene while
the original image has the out-of-focus blur. Since the objects
in these regions are stationary, such inconsistency in the blur
types can be used for splicing localization. In this paper, the
objective is the localization of the spliced region in a tampered
blurred image by exploration the inconsistency in the partial
blur types.

The existing techniques of splicing localization in a tam-
pered image [1] can be categorized into (1) format-based such
as DJPG compression detection [2]; (2) camera-based such
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(a) Authentic image

(b) Spliced image

Fig. 1: (a) An authentic image with out-of-focus blur, (b) A spliced
image generated by splicing a motion blurred region in image (a),
which has inconsistent blur types in the bottom (motion blur) and
top (out-of-focus blur).

as demosaicing regularity [3]-[4], camera response function
[5] and sensor pattern noise [6]; (3) pixel-based such as re-
sampling [7], contrast enhancement detection [8] and blur
degree inconsistency [9]; (4) physically-based such as light
anomalies [10] and size inconsistencies [11]. These techniques
have some limitations in splicing localization in a tampered
blurred image when resizing is applied after splicing.

Some works have been done for partial blur type detection
and classification. For example, Chen et al. [12] proposed a
method based on the lowest directional high-frequency energy
to classify motion and out-of-focus blurs. Liu er al. [13]
used the correlation of shifted blocks as a feature for motion
and out-of-focus blurs classification. Su et al. [14] proposed
a method for the segmentation of motion and out-of-focus
blurred regions in the partial blurred images based on alpha
channel feature. Aizenberg et al. [15] proposed a method for
segmentation of motion, gaussian and uniform blurs based on
the magnitude of cepstrum coefficients. However, for partial
blur type detection, these methods have low performance. In
our previous work [16], we proposed a method for splicing
detection based on blur type inconsistency. However, different
from it, this work has been proposed for splicing localization.

The rest of this paper is organized as follows. In section
II, we propose a partial blur type detection and classification
method used for splicing localization in blurred images. Exper-
imental results are shown in section III. Section IV concludes
the paper.

II. PROPOSED METHOD

The proposed method for splicing localization is explained
in the following sections.
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Fig. 2: Examples of blur kernels: (a)-(c) motion blur kernels, (d)-(f)
out-of-focus blur kernels.

A. Blur Type Feature Extraction

Given a color image B of size M x N, we convert into a
gray scale image G and then partition G into blocks G; ; with
L x L pixels, where ¢ and j are the index for different blocks
1<i< L%J 1<5< L%J) For an image block G; ;, the
image blurring process is given by

Gij=L;*K;; +N;; ey

where I; ; represents a sharp image block, K ; is a local blur
kernel represented by a two-dimensional matrix with size of
k X K, N; ; is the noise matrix and '+’ denotes convolution.
To estimate K; ; from G; ;, we use [18] which is independent
of the blur type and applicable for small patches to estimate
all local blur kernels K; ; of the image G.

Fig. 2 shows the top view of some blur kernel examples
with brighter regions indicating larger values. We observe that
despite of the kernel size, motion blur kernels tend to be sparse
because most values in these kernels are close to zero (dark
regions) while out-of-focus blur kernels are less sparse. We use
such differences to extract a set of features by describing the
blur kernel distributions roughly with Generalized Gaussian
Distribution (GGD) below.

_ K—p
rcd)
T
fK;p,v,0) = ﬁ e K 2
N 1

where K is the blur kernel estimated from a given region,
I'(.) is the gamma function, y is the mean, o is the standard
deviation and v (v > 0) is the shape-parameter of the GGD.
Due to the difference in the distributions of the out-of-focus
and motion blur kernels, the values of v and o suggest
distinctive difference in values. To explore such differences,
we plot in Fig. 3 the 2D scatter plot of «y versus o for the
blur kernels estimated from a set of randomly selected 800
(400 out-of-focus and 400 motion) blurred images. The value
of v in the out-of-focus blur kernels is larger than the motion
blur kernels, while ¢ in the out-of-focus blur kernels is smaller
than motion blur kernels. Such scatter plot shows that these
two classes of kernels from motion and out-of-focus can easily
be separable.

Based on such differences, v and o can be used as features
for blur type classification. We propose these features for local
blur type detection by describing the local blur kernels K; ;
with GGD by replacing K with K; ; in Eq. (2). As such, the
shape-parameter ; ; and standard deviation o; ;, representing
blur type features at block level, are used in the next section
for blur type classification.
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Fig. 3: 2D scatter plot of y vs o for Generalized Gaussian Distribution
of the blur kernels estimated from 400 out-of-focus and 400 motion
blurred images.

B. Blur Type Classification

In this section, we incorporate the proposed blur type fea-
tures to classify the blur type of image block G ; into out-of-
focus or motion. We generate a new feature v; ; by combining
7i,; and o; ; for dimensionality reduction. By representing ; ;
and o; ; as the feature vector x; ; = [y;; 0i;]T, we define
a mapping v; ; = f(X; ;). In general, the optimal mapping
v;; = f(Xi;) is a non-linear function. Since there is no
systematic way to generate non-linear transform, we reduce
the dimensionality based on linear transform of LDA [19], to
yield

Vij =W Xij = [wy wel[yij oij]" 3

where w = [w., w, |7 is the vector which projects the - and o-
axis onto a line. To find the best projection, the Fisher linear
discriminant [19] suggests maximizing between-class scatter
and minimizing the within-class scatter. Applying this rule for
two classes of out-of-focus and motion blurs, yields

w = Swil(eo —eM) “

where €0 = [e,, €50 )7 and ey = [e,, €o,,]7 are the vectors
of the mean of +; ; and o; ; in out-of-focus and motion blur
classes, respectively, and S,, is the within-class scatter matrix
obtained from

Sw =80 +Sum (5)

where So and Sj; are the variances of +;; and o, ; in
out-of-focus and motion blur classes, respectively. Using the
generated feature, v; ;, we formulate a binary classifier to
classify the blur type of the image block G; ;, denoted as B; ;,
as out-of-focus or motion, where

B . — "M’ (motion blur) ,
“3 71 ’O’ (out-of-focus blur) ,

if vi;=>p
otherwise

(6)

and p is the threshold that discriminates the blur type of an
image block into out-of-focus or motion.

By defining two classes including out-of-focus blur as
the positive class and motion blur as the negative class, the
true positive rate (TPR) and true negative rate (TNR) are
the detection accuracy of out-of-focus blur and motion blur
regions, respectively. The threshold p is chosen in such a way
to maximize the average of TPR and TNR on a training set of
images. Also, to calculate the projection vector w, we use the



training set of out-of-focus and motion blurred images. Using
the calculated p and w, we measure the performance for the
testing set.

Since the blocks without content (smooth blocks) are not
reliable in blur type detection, the image blocks are categorized
into smooth and non-smooth using the method in [20]. After
the blur type classification, a refinement is applied to classify
the smooth blocks based on the blur type of the nearest non-
smooth ones. If a smooth block has more than one nearest
non-smooth block with different blur types, the majority of blur
types indicates the blur type of the smooth block. Such a classi-
fication discriminates the image into s regions Rq, Ro, ..., R,
where s may change from 2 to [%] x | ¥ | (the number of
image blocks).

C. Splicing Localization

After the generation of s regions Ri, Ra, ..., Rs, we in-
crease the boundary precision of the regions to pixel level.
First, we define boundary blocks as the ones which at least
one of their 4-neighbors are from a different region. Second,
we assign the labels ‘1°, ‘2’, ..., ‘s’ to the pixels of all non-
boundary blocks in the regions R, Ra, ..., Rs, respectively.
The remaining pixels of the boundary blocks are non-labeled.

Third, we apply an energy-based technique [21] to prop-
agate the labels from labeled pixels to non-labeled pixels by
interpolation. Using the matting Laplacian, the interpolation
problem can be formulated by minimizing a cost function.
This cost function considers pixels intensity in addition to
the labels to discriminate the pixels based on the different
intensities. Since it is likely that the intensity of the pixels
around the boundary of the spliced region and the original
image are different, by considering the pixels intensity, a fine
boundary localization can be achieved. After assigning the
labels to all pixels of the boundary blocks, we generate the
regions R}, R}, ..., R, from the corresponding pixels.

After generation of R, R),...,R., a human decision is
needed to indicate the spliced region based on the some
inconsistencies between the blur type and semantic of the
image. Such inconsistencies can be discovered based on the
following facts to detect possible forgery: (1) In an image with
out-of-focus blur, the stationary objects, e.g. building, should
not have motion blur. (2) In an image with hand shaking or
camera motion blur, all the objects should have motion blur,
unless the object is stationary with respect to the camera. In
such a case, the spliced region and the original image are
differentiated by the blur type regions.

III. EXPERIMENTAL RESULTS

In this section, firstly we evaluate the performance of
the proposed method for splicing localization by comparing
with some of the state-of-the-art methods in partial blur type
detection, including Chen et al. [12], Su et al. [14] and
Aizenberg et al. [15]. We took 800 natural blurred photos
(400 out-of-focus and 400 motion) in TIFF noncompressed
format with size of ranging from 1024 x 768 to 3456 x 2304
pixels, from 4 cameras. The ground truth of motion vs out-of-
focus blurs being recorded properly. To generate the motion
blurred images, we create motion with the camera in various
degrees when taking pictures. To generate the out-of-focus
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TABLE I: Performance comparison of the methods for splicing
localization by considering image size of 1024 x 768 pixels and
spliced region sizes of 100 x 100, 200 x 200 and 512 x 384.

Method Spliced Region Size TPR(%) TNR(%) Accuracy(%)
Chen 100 x 100 83.1 84.9 84.8
et al. [12] 200 x 200 80.7 85.5 85.3
512 x 384 84.0 82.6 82.9
Su 100 x 100 84.6 80.3 80.4
et al. [14] 200 x 200 81.7 85.3 85.0
512 x 384 82.8 822 823
Aizenburg 100 x 100 85.1 83.2 83.3
et al. [15] 200 x 200 82.8 84.5 84.4
512 x 384 87.5 83.1 84.0
Proposed 100 x 100 95.1 94.4 94.5
Method 200 x 200 96.8 95.3 95.4
512 x 384 95.1 96.6 96.3

blurred images, we took the blurred photos by using the
manual focusing in various degrees. When taking the out-of-
focus blurred photos, the camera was mounted onto the tripod
stand to ensure maximum stability so that the cause of the
natural blur was only due to the manual focusing controlled
by the user.

We examine the proposed framework in splicing localiza-
tion by considering different spliced region sizes including
100 x 100, 200 x 200 and 512 x 384 and whole image size of
1024 <768 cropped from the original blurred images. We create
datasets of tampered images exhibiting blur type inconsistency
by splicing the regions extracted from 400 motion blurred
images in 400 out-of-focus blurred images, and the regions
extracted from 400 out-of-focus blurred images in 400 motion
blurred images, at random locations. As such, we have 800
tampered images for each tampered region size. The tampered
regions are defined as irregular shapes. It is worth to note
that, since in this scenario we consider the natural blurred
images, the original image and the spliced region may have
different blur degrees. We define two classes including spliced
region as the positive class and authentic region as the negative
class, which are used to evaluate the splicing localization
performance. Table I shows the performances comparison.
Our method outperforms the prior works [12], [14], [15]
for different spliced region sizes. It can be seen that the
performance of our method does not vary much by decreasing
the size of tampered region.

Next, we show the effect of resizing on our method and
some of the state-of-the-art methods in splicing localization,
including JPEG artifacts [2] and CFA artifacts [3] with an
example in Fig. 4 (b). Fig. 4 (a) shows an authentic out-
of-focus blurred image. By splicing a motion blurred region
in image (a), a tampered image is generated with size of
1600 x 1200, in Fig. 4 (b). After splicing, the tampered image
is resized into 1024 x 768 pixels.

The binary splicing localization maps generated by the
methods [2], [3] for the image (b) is shown in Fig. 4 (c)-
(d), where the white pixels indicate the possibly tampered
areas. To generate such binary maps, the generated probability
maps (gray scale maps) using [2], [3] are binarized with the
threshold p which is chosen in such a way to maximize the
average of TPR and TNR on the training set of images. For the
generated probability maps using [2], [3], the values between
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Fig. 4: Example of splicing localization in the presence of tampered image resizing. (a) An authentic out-of-focus blurred image. (b) A
tampered image generated by splicing a motion blurred region in image (a), followed by resizing. Binary splicing localization maps generated
by (c) CFA artifacts [3]; (d) JPEG artifacts [2]; where white pixels indicate high possibility tampered areas. (e) show the results of our method
in detection of inconsistent blur types (out-of-focus and motion blur type regions are indicated by white and black regions, respectively) used

for splicing localization.

0 and 1 show the probability that splicing occurs. By setting
the threshold p, the values are classified into the spliced or
the authentic regions, indicated by white and black color,
respectively. If a value is larger than the threshold, it belongs
to the spliced region, or vise versa.

The results reveal that these methods cannot detect the
spliced region. Image resizing removes the artifacts used by
the CFA [3] and JPEG [2] methods. Therefore, such techniques
may not detect the spliced region while our method is more re-
liable to resizing operation. The result of our method shown in
Fig. 4 (e) discriminates the image into out-of-focus and motion
blur type regions, indicated in white and black, respectively.
Such a discrimination indicates spliced and authentic regions
with different blur types.

IV. CONCLUSIONS

In this paper, a new method was proposed for splicing
localization in a spliced blurred image. After partitioning the
image into blocks, the local blur type features are extracted.
These local features are incorporated for classification of the
image blocks into out-of-focus or motion. Finally, based on
the human decision, a multiple blur type image is detected
as tampered when the motion blurred region is stationary.
In such a case, the different blur types indicate the spliced
and authentic regions. The experimental results in the partial
blur type detection show that the proposed method classifies
the out-of-focus and motion blur types successfully, which
outperforms the state-of-the-art methods.
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