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Abstract—In this paper, we address the problem of branded
handbag recognition. It is a challenging problem due to the
non-rigid deformation, illumination changes, and inter-class
similarity. We propose a novel framework based on deep
convolutional neural network (CNN). Concretely, we propose
a new CNN model, called feature selective joint classification-
regression CNN (FSCR-CNN). Its advantages lie in two folds:
1) it alleviates the illumination changes by a feature selection
strategy to focus on the color-nondiscriminative features in
the network learning, and 2) rather than only targeting on
the hard label (i.e., the handbag model), it also incorporates a
soft label (i.e., a distribution measuring the similarity between
the ground truth model and all the models to be trained) to
construct the loss function for training CNN, which leads to a
better classifier for handbags with large inter-class similarity.
We evaluate the performance of our framework on a newly built
branded handbag dataset. The results show that it performs
favorably for recognizing handbags with 94.48% in accuracy.
We also apply the proposed FSCR-CNN model in recognizing
other fine-grained objects with state-of-the-art CNN architectures,
which is able to achieve over 5% improvement in accuracy.

Index Terms—Convolutional neural networks, feature selection,
handbag recognition, soft label.

I. INTRODUCTION

V ARIETIES of branded handbags have become the ne-
cessities of human beings in today’s fashion world.

When consumers are attracted to a handbag, they always ask
more information regarding its specific model, pricing, etc.
Recognizing the model of the handbag from its image can
help those consumers to search for more information or even
make a key-word based purchase. In addition, getting con-
sumers’ feedback from the social network can help the handbag
marketing agencies in branding purpose. While consumers
usually prefer to upload photos of their precious handbags
without specific model description, it will result in difficulty for
marketing agencies to retrieve consumers’ comments based on
the handbag model. By recognizing the handbags, descriptions
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or comments attached with the handbag photo can be easily
collected. Therefore, to build up a convenient and useful mul-
timedia system to help users retrieve more information about
the query handbag, image-based branded handbag recognition
is a key step.
The function of a typical multimedia system is to get in-

formation from multiple media sources e.g. text, graphics
drawings or images and use it for various applications [1], [2].
A lot of researches have been done on multimedia retrieval
[3]–[5], fashion search [6], fashion recommendation [7], [8],
fashion parsing [9], and label or landmark recognition [10]. As
a fashion recognition problem, handbag recognition has a large
demand. In this paper, we consider studying this recognition
problem from a visual standpoint: recognize the handbag model
for a given input handbag image. The model information,
recognized from still images, can be potentially employed to
other multimedia applications, e.g., to be combined with other
media sources, such as numerical number (ratings from the
consumer, pricing) and text (comments and preferences), to
build a powerful information mining system or an e-commerce
recommender system.
Handbag recognition belongs to the category of fine-grained

object recognition, which is a challenging problem even for
human beings [11]. The main challenge of fine-grained object
recognition is to differentiate fine-details among sub-categories
of the same object class (e.g., birds, dogs, flowers or handbags).
As for handbag recognition, the main difficulties lie in three
folds: 1) non-rigid deformation: for those handbags with soft
materials, their shapes or patterns might be heavily distorted
[see Fig. 1(a)]; 2) illumination changes: some handbags differ
with each other only by color (color sensitive), however, the
illumination changes enlarge the intra-class color variance [see
Fig. 1(b)]; and 3) inter-class similarity: the appearances of some
handbags may be very similar [see Fig. 1(c)], which makes it
difficult to learn a proper classifier to differentiate these visu-
ally similar models.
A growing literature corpus has proposed various tech-

niques for fine-grained object recognition. For example, the
deformable part descriptor-based methods [12] deal with large
pose variation. Handbags, however, do not have prototypical
regions or annotated parts, which brings difficulties when
seeking for a solution by using those methods. The detection
and segmentation based methods [13] decrease the impact of
background, while the segmentation accuracy cannot be guar-
anteed. Human-interactive methods [14] incorporate human
intelligence to assist the recognition. It is a burden for users
who likely cannot understand the internal workings of the
algorithm. Deep Convolutional Neural Network (CNN) based
methods [15] transfer the CNN models trained on large labeled
datasets (e.g., ImageNet [16]) to specific visual recognition
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Fig. 1. Illustrations of the main difficulties in handbag recognition due to
(a) non-rigid deformation, (b) illumination changes, and (c) inter-class simi-
larity. The models of handbags in each row are the same in (a) and (b), while
similar handbags are enclosed in the same box in (c). All the figures in this
paper are best viewed in color.

tasks. But none of the methods train networks by considering
the challenges in handbag recognition.
The traditional approaches to address this problem usually

employ shallow architectures, which consist of hand-crafted
features [17]–[19] followed by trainable classifiers [20], [21].
Some approaches have an additional feature selection or data
representation procedure [22], [23]. In our previous works
[24], [25], we first attempt to address handbag recognition by
proposing a hierarchical structure or a complementary feature.
However, the lack of discriminability of hand-crafted features
becomes a bottleneck for training a better classifier. Recently,
CNN has been shown to be effective in both feature extraction
and classifier learning [26], [27]. However, previous CNN
models do not embed discriminative color information during
training, and only use the ground truth class label for recog-
nition tasks. To handle the difficulties in handbag recognition,
our focus here is learning more powerful discriminative infor-
mation based on CNN. We explicitly consider (1) incorporating
discriminative color information to classify color sensitive
objects, and (2) assigning a distribution measuring how similar
this class is to other classes to differentiate visually similar
classes.
Concretely, we propose a novel end-to-end framework to rec-

ognize the model for a given input handbag image. This frame-
work aims to address the difficulties mentioned above, where we
explore CNN for feature and classifier learning. In the training

phase, two kinds of CNN models are learned: a CNN detec-
tion model (Section III-B) and a Feature Selective joint Clas-
sification-Regression CNN (FSCR-CNN) classification model
(Section III-C). We propose the following two innovations for
FSCR-CNN.
1) Feature Selective CNN (FS-CNN): we learn a regression

function to map the first fully-connected feature to the
color feature via random forest. Then, by measuring the
color-discriminability of each element of the fully-con-
nected feature based on the regression function, only those
color-nondiscriminative ones will be forwarded and back-
propagated.

2) Joint Classification-Regression CNN (CR-CNN): we pro-
pose a novel loss function by considering both the hard
label and the soft label of the training data for CNN fine-
tuning. For each training sample, the hard label means its
ground truth class label, while the soft label refers to a dis-
tribution that measures the similarities between its ground
truth class and all the classes.

During the testing stage, we first propose to localize and
extract a set of handbag regions (proposals) by exploring the
symmetry property of the handbag (Section III-A). These
extracted proposals are then fed into the CNN detection model
and FSCR-CNN classification model separately. The detection
scores and classification scores are combined by employing a
conditional probability model (Section III-D). Eventually, we
recognize the query handbag image according to the highest
combined score.
The major contributions of this work can be summarized as

follows.
1) We propose a feature selection strategy to improve the dis-

criminability of the learned CNN by optimizing the color-
nondiscriminative features in handbag recognition.

2) We propose a novel loss function for CNN by taking both
the hard label and the soft label into consideration, so as
to facilitate the classifier modeling for visually similar ob-
jects. Such a loss function can be adopted on different CNN
architectures, with over 7% improvement in accuracy for
handbag recognition.

3) The proposed FSCR-CNN can be generalized to other
image-based fine-grained object recognition problems.

II. RELATED WORK

In this section, we briefly review the related works, including
CNN learning based image classification and fine-grained ob-
ject recognition.

A. Deep Convolutional Neural Network For Image
Classification
Recently, deep learning shows promising results in many

computer vision applications such as image classification,
image understanding, etc. [28], [29]. CNN architectures [26],
[30], [31] achieve state-of-the-art results, surpassing methods
incorporating hand-crafted feature representations or traditional
classifiers obtained through years of domain-specific expertise.
Several CNN structures are proposed to learn discriminative
features from raw image inputs and exhibit hierarchical se-
mantic information along their deep architecture [31]–[33].
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The popular “AlexNet” ImageNet model [26] is built on an
eight-layer architecture, where the first five layers are convolu-
tional layers, followed by three fully connected layers, with an
-way softmax as the output, where is the number of cate-

gories. Its performance is more than 10% better when compared
with traditional methods in the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC-2012) competition. An
integrated framework OverFeat [34] was proposed later to train
a convolutional network which can simultaneously do the task
of detection, localization and object classification. This work
shows how a multiscale and sliding window approach can
be efficiently implemented within a Convolutional Network.
OverFeat wins the localization task of ILSVRC-2013. The
CNN-S architecture proposed by Chatfield et al. [27] is related
to the structure of the OverFeat network and achieves better
performances in image classification. To address the object
recognition problem, Girshick et al. [35] proposed regions with
CNN features (R-CNN) to localize objects by applying CNN
to bottom-up region proposals when labeled training data is
scarce. Recently, a new 22 layers deep network GoogLeNet
[31] has been proposed to increase the depth and width of the
network with the computational budget unchanged. It achieves
the state-of-the-art performance for detection and classification
in the ImageNet Large-Scale Visual Recognition Challenge
2014 (ILSVRC14).
In this paper, we propose a handbag recognition framework.

Our framework consists of a training phase and a testing phase.
A CNN detection model and a proposed CNN classification
model are trained. In the testing phase, we first incorporate the
symmetry property of the handbag for handbag proposals ex-
traction. The extracted top proposals are fed into the detec-
tion model and classification model to yield detection scores
and classification scores, respectively. A conditional probability
model is further employed to combine the detection and clas-
sification scores. Our handbag proposals extraction is related
to the R-CNN [35] framework for object detection. We also
study various CNN architectures for training the classifier. We
find that the previous CNN models [26], [34], [27], [31] do not
provide discriminative color information during training. More-
over, CNN models only consider the hard label (i.e., the ground
truth class label) to train a multi-class classifier. This is not suf-
ficient especially for visually similar classes. In order to train
a better CNN for classification, we propose a Feature Selec-
tive joint Classification-Regression CNN (FSCR-CNN) model,
which consists of Feature Selective CNN (FS-CNN) and joint
Classification-Regression CNN (CR-CNN). FS-CNN incorpo-
rates a feature selection strategy after the first fully connected
layer such that the feature elements not describing color well are
forwarded and back-propagated. CR-CNN introduces the usage
of the soft label, to complement the hard label for classification.

B. Fine-Grained Datasets and Classification Strategies

Fine-grained object recognition aims at classifying visual
data in a subordinate level, e.g., to differentiate blackbird
from crow or to tell dandie dinmont from maltese. Several
competitive benchmarks have been built for the research of
fine-grained object recognition such as the Caltech-UCSD bird

[36], the Stanford Dogs [37], the Oxford Flower 102 [38], and
Wang’s large-scale car datasets [39].
One way to tackle fine-grained recognition is to seek for the

localization of the discriminative parts [40]–[42], [12]. The mo-
tivation is driven by the observations that some semantic parts
have isolated subtle appearance differences among fine-grained
subcategories. Thus, keeping the discrimination among visually
similar categories facilitates fine-grained categorization. Seg-
mentation/detection with classification methods [13], [39] show
that segmenting out the background distracters is beneficial.
It helps classification in several ways, such as localizing the
object. Human-interactive assistance [43], [14] requires user’s
input to assist the recognition process. However, these methods
are not directly applicable to handbag recognition problem.
Specifically speaking, handbags do not have semantic parts;
segmentation based recognition methods would not perform
well if the foreground region were not segmented correctly;
and human-interactive methods require human labor.
Recently, CNN is applied to fine-grained object recognition.

Branson et al. [12] normalize the pose of bird species and feed
each region into a CNN, where features are extracted from mul-
tiple layers. Xiao et al. [44] combine object-level attention and
part-level attention to train domain-specific deep nets. Azizpour
et al. [15] investigate the transferability of ConvNet represen-
tation for a particular target task from aspects such as network
width, network depth, and dimension. Our approach also falls
into the CNN learning category, while in order to deal with dif-
ficulties mentioned in Section I, our work differs in the network
configuration of color selection and label distribution learning.

III. HANDBAG RECOGNITION

Fig. 2 shows our proposed handbag recognition framework.
Given an input handbag image, we localize a set of handbag re-
gions by exploring the symmetry property of handbags. Two dif-
ferent deep CNN models are trained, the CNN detection model
and the FSCR-CNN classification model, to predict the fore-
ground detection score and classification score of each proposal,
respectively. Finally, conditioned on the scores of the CNN de-
tection model, a probability model is employed to refine the
classification scores of FSCR-CNN model. The model (class)
of the input handbag is predicted based on the refined classifi-
cation scores.

A. Symmetry-Based Proposals Localization

Object proposal indicates a candidate bounding box covering
an object in the image [45]. Using object proposals increases
the computational efficiency for object detection. Recent works
include objectness cues [46], selective search [47], BING with
high computation [48] and edge box [45]. Edge box method
[45] computes how likely a bounding box contains an object by
calculating the number of contours wholly contained in the box,
which is suitable for localizing handbag proposals. The shape of
handbags is rectangular-like, which satisfies the assumption of
the edge boxes, i.e., their contours are more likely to be wholly
enclosed or fitted by a box.
However, edge box method is designed for general objects,

which does not consider the specific property of handbags.
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Fig. 2. Overview of the proposed handbag recognition framework. Given an input handbag image, a set of proposals are localized and extracted, which are
further fed into the CNN detection model and the FSCR-CNN classification model. Eventually, the conditional probability model recognizes the handbag model
by combining the classification scores and the detection scores.

Fig. 3. Top ranked handbag proposals (enclosed in yellow boxes) by (a) the
edge box method [45] and (b) the proposed method.

Thus, the returned top proposals by edge box method some-
times cannot accurately enclose a handbag region, which cover
parts of the region, or parts of the background instead, as shown
in Fig. 3(a). This problem can be alleviated by utilizing the
observation that handbags are often shown in symmetry.
We follow the notation in [45]. For the computed edge map

of an input image , any of the pixel is defined as , represented
as a complex number, with magnitude and orientation .
Then some candidate bounding boxes are computed on the edge
map based on a sliding window search. Each bounding box
localizes a corresponding object proposal, the score of which is
calculated by [45]

(1)

where the first term computes the score of whether a set of
edge groups is wholly contained in box , the second term
computes the edge magnitudes from a smaller box centered in
, and the subtraction is because those edges in the center of the
box are less important.
Next, we propose to compute a symmetry score for the pro-

posal enclosed by box , which is to measure how symmetric
the proposal is. The feature extraction procedure below for com-
puting symmetry score is shown in Fig. 4:
1) quantize and into 10 and 6 bins that are uniform in

space, respectively;

Fig. 4. Feature extraction procedure for computing the symmetry score for a
proposal. Each block in the 2-dimensional histogram indicates the frequency of
occurrence of edge pixels in a cell with corresponding quantized magnitude and
orientation, darker means higher frequency.

2) decompose into spatial cells (4 cells on the right and
4 cells on the left). Each cell is represented by a -bin
2-dimensional histogram;

3) normalize the 2-dimensional histogram by the number of
edge pixels inside each cell, which is further pulled into a
vector to represent the cell;
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4) use the same sequence to concatenate the vector of each
cell on the right, denoted as and left, denoted as ,
respectively.

The symmetry score of the proposal is computed by

(2)

where indicates the Chi-square distance between
and . The final proposal score of is

(3)

where is to balance the object proposal score and the
symmetry score.
The proposals with highest scores are selected for future

recognition. Noted that we exclude the proposals which are too
small to provide sufficient information for recognition. Only
bounding boxes which satisfy the criteria that and

will be considered, where , and are
the width and height of box , and are the width and height
of image . Some returned top proposals by proposed method
are shown in Fig. 3(b).

B. CNN Detection Model
Deep CNNmodel is shown to be a powerful image descriptor

or classifier [26], [49]. However, for fine-grained datasets
which only have limited resources, CNN suffers from over-fit-
ting. Therefore, for all CNNs trained in our paper, we adopt
the ImageNet pre-trained model, and fine-tune it accordingly.
ImageNet [16] organizes objects according to the WordNet [50]
hierarchy and each node is depicted by hundreds and thousands
of images. It contains the subset of bags categorized by the
shoulder bag, evening bag, clutch, reticule and etui.
In the CNN detection model, the deep CNN is trained as a

binary classifier to distinguish the foreground handbag region
from the background. Data preparation details will be discussed
in the experiment.

C. FSCR-CNN Classification Model
Feature Selective CNN Architecture (FS-CNN): In deep

CNNs, after the first convolutional layer, RGB channels are
all mixed to be fed into the consecutive layers. Such CNN
models may not be good at dealing with illumination changes
[see Fig. 1(b)]. To address this problem, we introduce a feature
selection strategy into CNN to help learn features which can
better describe color information. The proposed FS-CNN is
shown in Fig. 5. Based on the proposed feature selection, the
color-discriminative features of remain unchanged and the
color-nondiscriminative features participate in the forward pass
and the backpropagation.
We choose color-nondiscriminative features to forward and

back-propagate because these features are not informative for
the color, which may result in an unsatisfactory classification
result. Their associated neurons are required to be further opti-
mized based on the corresponding classification error. In such
a way, the whole network is more capable to do the classifi-
cation. To select the color-nondiscriminative features, we pro-
pose a random forest [21] based feature selection procedure.
Random forest is an ensemble of randomized decision trees,

Fig. 5. Illustration of the FS-CNN. The feature selection is applied on the first
fully connected layer, where the black part indicates the color-discriminative
feature elements, and the white part indicates the color-nondiscriminative fea-
ture elements. The dashed line indicates forward pass and dotted dashed line
indicates the backpropagation.

which is shown to perform well for multi-class classifications in
many tasks [51]–[53]. Each random forest tree consists of sev-
eral branch nodes and leaf nodes. Each branch node selects a
feature dimension which is discriminative for the classification
or regression. According to [21], a certain feature can regress
another feature using random forest. Here we adopt such pro-
cedure to regress the color feature of each training image using
CNN feature. In our implementation, the color feature is
computed by employing color naming method [54]. It learns
color from real-world images which is more robust to the illu-
mination variance. During such regression process, each node
of the random forest tree will select the most color discrimina-
tive dimension of feature. We propose to measure the color
discriminability of the th dimension of feature by

(4)

where is the number of the branch nodes for all trees and

if
otherwise

(5)

where refers to the index of the feature element chosen
in the th node. Among -dimensional feature elements,

( ) most non-discriminative feature elements are
selected according to the color discriminability.
Joint Classification-Regression CNN Model (CR-CNN):

Handbag recognition is a multi-class classification problem.
A straightforward way to address it is to train a hard label
multi-class classifier, such as the softmax classifier. However,
some handbags are extremely similar, as shown in Fig. 1(c),
even human beings have difficulties to distinguish them. In
other words, given a single hard label of a handbag class, it’s
difficult to train a reliable classifier to distinguish it from its
visually similar classes. This is because the penalties for mis-
classifications to its visually similar classes and dissimilar ones
are equal. Therefore, a better way is to assign an additional soft
label to each handbag class, which is a distribution measuring
how similar this class is to all the classes. By using the soft
label, the penalties for misclassifying a handbag to its visually
similar classes are less than those to the dissimilar classes.
Researches have been done to show that soft label is helpful
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Fig. 6. Examples of soft labels in a three-class dataset.

for some computer vision tasks [55], [56]. Here we propose to
take advantages of both hard label and soft label for the CNN
training procedure. Fig. 6 illustrates the soft labels of a 3-class
dataset, each of which can be represented as a 3-dimensional
vector.
To assign an additional soft label to each handbag class, we

can adopt a confusion matrix based on the classification perfor-
mance on a validation set as indicated in [57], [58]. However,
the confusion matrix measures how easy it is to discriminate
between different classes, which may not have a good measure
for the similarities between classes. Therefore, in order to es-
tablish the soft labels, we propose to use learned CNN features
of the training data to measure the similarities between classes.
As these features are learned together with classifiers, they are
descriptive and distinctive. The first fully-connected layer (i.e.,

) features of the training data are extracted and processed as
follows:
1) compute the mean of features among all the training

samples within the same class (each class has a corre-
sponding mean feature);

2) obtain a distance matrix with each element as

(6)

where and indicate the mean features of class
and , respectively, refers to the Chi-square distance
of the mean features;

3) normalize to ;
4) compute a matrix with entry

(7)

which measures the similarity between classes and ;
5) the soft label for class can therefore be assigned as

, where is the
number of classes being trained.

Now with the learned soft labels, we propose a joint
classification-regression loss to learn the network. Given a
handbag training dataset with foreground handbag im-
ages (belonging to handbag class) with the labels

, where , and let
) be the output of the last inner-product layer for

, the proposed joint loss function is defined as

(8)

where

(9)

is the indicator function, and is a tradeoff parameter
which balances the two loss terms. The first term is the stan-
dard softmax loss which penalizes the classification error for
each class equally. The second term is the regression squared
loss term, which penalizes the difference between the predicted
scores of (i.e., ) and the soft labels . The second
term is learned jointly with the first term, which also acts as a
regularizer for the first term.
In order to run stochastic gradient descend (SGD) on the pro-

posed loss function, we apply the back-propagation based on
the partial derivatives of the new loss with respect to the output
of the last inner product layer . The partial derivatives are
given as follows:

(10)

D. Conditional Probability Model

Given a test image, its top-ranked proposals are fed into
both CNN detection model and FSCR-CNN classification
model. For each of the top proposals ,
we compute the probability that belongs to class (

) as

(11)

where indicates the classification score of the
FSCR-CNN model for with the assumption that it belongs
to the foreground region, and denotes the foreground
detection score of the CNN detection model for . The query
image is then predicted as class , where

(12)
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Fig. 7. Examples of visually indistinguishable handbags. Handbags with the
same appearance but with (a) different sizes, (b) indistinguishable colors, and
(c) different materials.

IV. DATASET CONSTRUCTION
As no existing benchmark is available for branded handbag

recognition, we construct a handbag dataset, covering 220
Louis Vuitton handbag models downloaded from Google,
Flickr or some shopping websites. Building such a dataset
costs a lot of human labor due to the following reasons: (1) the
image resources are limited for most of the handbag models
and (2) slight texture or color changes of handbags will lead to
different handbag models. Handbag images of the same model
might appear differently due to serious distortions or variations
of illumination.
The dataset construction procedure consists of four key steps:

1) list the target handbag models to collect; 2) merge handbag
models which are visually undistinguishable, such as handbags
with the same appearance but different sizes, indistinguishable
colors, or different materials (as shown in Fig. 7); 3) for each
handbag model, search for handbag images from public web-
sites (Google, Flickr or online shops) by key-words such as
the model name, which costs human labor because many at-
tached annotations do not match with the images; and 4) remove
handbag images which are noisy, duplicated, heavily occluded,
with low quality or in wrong viewpoints, and retain handbag
models containing at least 10 images. Eventually, the dataset
contains 5545 images of 220 handbag models. Each handbag
image in our dataset is annotated manually with a bounding
box, which is a rectangular region outside the handbag surface
without strap, as shown in Fig. 8. To the best of our knowledge,
this is the first dataset created for handbag recognition.

V. EXPERIMENTS AND DISCUSSIONS

A. Experimental Setup
Data Preparation: We randomly split our dataset into 5 im-

ages per model for training and the rest for testing. Each image
in our dataset has a ground truth bounding box. We use the

Fig. 8. Examples of handbag images with the associated bounding boxes
(marked with yellow rectangles) in our dataset.

cropped images as the input to train the framework, which is
guided by the bounding boxes.
For training FSCR-CNN classification model, we augment

the input data in two ways:
1) sample random crops around the bounding box regions

from both original images and their flipped versions. The
cropping is done such that , where is defined as
the ratio between the intersection and the union of the crop
and the bounding box;

2) apply our proposal localization method on the training im-
ages. For each training image, we select the first 20 pro-
posals (i.e., crops) which satisfy .

Eventually we generate 17,774 images for training 220
handbag models.
For CNN detection model, we regard the previous gener-

ated crops as positive data for training. To create the negative
data, we randomly crop image patches from the background of
the training images, which also contains two sets, including the
crops with and the first 20 proposals (extracted by the
proposed proposal localization method) for each image with

. Thus, we obtain 17,774 positive and 18,102 negative
training data.
CNN Model: For all the CNN models we train, we start the

training with a fixed learning rate and decrease it by a factor of
10 after the training error stops reducing. In our implementation,
we use the MatConvNet toolbox [59], which provides different
CNNs for computer vision applications. The CNN model pro-
posed in [26] is incorporated in our proposed handbag recogni-
tion framework.

B. Evaluation of the Proposed Framework

In this section, we evaluate the performance of the proposed
handbag recognition framework. Several parameters are needed
to be set in advance. Similar to the parameter tuning in [60],
[61], we tune our parameters with the help of cross-validation
on the training data. Based on our observation, the top 10 pro-
posals are sufficient to cover the handbag region. With this ob-
servation, we set the number of selected proposals as
the initial value. Percentage of non-discriminative feature ele-
ments is within the range of [0,1]. To disable feature selection
during classifier training first, we set as the initial value.
Following [60] and [61], we initialize , and to be zero. We
then sequentially learn one after another by applying cross val-
idation (e.g., search for the best value of first, and then fix ,
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TABLE I
COMPARISONS OF HANDBAG RECOGNITION ACCURACIES ON THE HANDBAG DATASET

Fig. 9. Handbag recognition accuracies of symmetry-based EdgeBox detection classification when using different parameters:
(a) tradeoff between the object proposal score and the symmetry score , (b) number of selected proposals , (c) scale ratio for the selected proposals ,
(d) percentage of non-discriminative feature elements , and (e) tradeoff between classification loss and regression loss .

and search for the best value of ). Unless otherwise specified,
we use the default setting for these parameters.
In our framework, we use the foreground images to do the

training. Thus, similar to the work in [35], we regard the object
proposals classification as our baseline method, but we
adopt a more recent edge box method [45] for extracting the
object proposal. For each image, we extract the top proposals
and take the classification result of the object proposal which
gives the maximum classification response. The performance
of the baseline is given in Table I, which is over 5% higher
compared with using CNN only (59.48%).
Performance of the Symmetry-Based Proposal Localization:

We evaluate our symmetry-based edge box method, which pro-
vides better proposals compared with the baseline. It is shown
from the third row in Table I that we are able to obtain an im-
provement of over 8% in accuracy compared with the baseline.
Performance of the CNN Detection Model and Conditional

Probability Model: We recognize handbags with the CNN clas-
sification scores of their proposals conditioned on the CNN de-
tection scores. The result of such handbag recognition is shown
as Symmetry-based EdgeBox detection classi-
fication in Table I. The combination of detection scores with
classification scores by the conditional probability model pro-
vides better results with 8% improvement over Symmetry-based
EdgeBox classification.
Performance of the Proposed FSCR-CNN Classification

Model: We have made two contributions in this model, which
are FS-CNN and CR-CNN. We report the handbag recogni-
tion accuracies after replacing existing CNN classification
with our proposed classification models in Table I. Replacing
CNN classification with FS-CNN classification and CR-CNN
classification in our framework both lead to better results,
with around 4% and 8% improvement in the accuracy re-
spectively. We further combine FS-CNN and CR-CNN (i.e.,
FSCR-CNN) for the classification. With FSCR-CNN, our

framework achieves 24.55% better than the baseline (EdgeBox
classification).

We also evaluate the performance of applying only CNN
and FSCR-CNN directly for handbag recognition (without
foreground detection). As mentioned earlier in this section,
if we only used CNN, the recognition accuracy would be
59.48%. FS-CNN and CR-CNN help to boost the performance
to 62.66% and 69.10% respectively. FSCR-CNN achieves the
best accuracy, which is 71.98%. Therefore, it is beneficial to
embed CNN models into our proposed framework for handbag
recognition.
Parameter Analysis: We vary the parameters , , , and
in the following ranges while keeping the others as the default

values.
• ;
• ;
• ;
• ;
• .
We evaluate the sensitivity of each parameter for our pro-

posed framework (i.e., Symmetry-based EdgeBox
detection classification) in Fig. 9. We ob-
serve that the performance is not sensitive to these parameters
within certain ranges. is the most significant parameter in our
method, as it balances the classification loss and regression loss.
Accordingly, when is large (i.e., ), the soft label plays a
more important role than the hard label for classification. When
is small (i.e., ), the effect of regression loss can be

almost neglected.
Computational Complexity: Our framework consists of

three parts: Symmetry-based EdgeBox, CNN detection and
FSCR-CNN classification, where Symmetry-based EdgeBox
has only testing phase, while the other two have both training
and testing phases. We report the training time for 220 handbag
classes (in hour) and testing time per image (in second) in
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TABLE II
TRAINING TIME (IN HOUR) OF HANDBAG DATASET AND TESTING TIME

(IN SECOND) PER HANDBAG IMAGE OF DIFFERENT METHODS

Fig. 10. Training and testing time based on different number of handbag
models for FSCR-CNN. (a) Averall training time (hours). (b) Testing time for
each image (seconds).

Table II. The experiment is conducted on MATLAB R2013a,
in a workstation of E5-2630 CPU, 96 GB RAM, and a GPU
Tesla K40. Note that for all CNN methods, we exclude the
image loading time and set the batch size to 200 for each epoch.
We also evaluate the complexity of FS-CNN and CR-CNN
separately, and compare them with CNN. We observe that
CR-CNN takes longer training time because it requires several
more epochs to converge (25 to 30 for training handbags) than
CNN (normally around 25 epochs). FS-CNN converges around
25 epochs. Besides, it takes longer time than CNN or CR-CNN
for each epoch since the random forest implementation is time
consuming. The training time of FSCR-CNN is longer, because
it converges around 35 to 40 epochs. However, the training
process can be applied off-line. To speed up, feature selection
by random forest can be parallelized. In addition, with more
GPUs, those CNNs can be also trained in parallel. For testing,
the time costs of all CNNs are about the same.
In addition, we report the scalability of FSCR-CNN in

terms of computational complexity and recognition accuracy.
Fig. 10(a) shows the increase in the total training time vs. the
increase in the number of handbag models. Fig. 10(b) plots the
testing time for each image. We observe that with the increase
in the number of training classes, the training time is somewhat
linear. Noted that this is due to the increasing number of batches
required at each epoch. The class number does not heavily
influence the testing time per image. Based on the different
number of handbag classes, Fig. 11 illustrates the handbag
recognition accuracies of the proposed framework. With the
increase of class number, the accuracy decreases slightly in a
certain range. While the performance does not suffer from a
significant drop when the number of classes grows.

Fig. 11. Handbag recognition accuracies of the proposed framework based on
different number of handbag models.

TABLE III
TOP-1 AND TOP-5 ACCURACY (%) OF CNN BASED ARCHITECTURES
ON THE OXFORD FLOWERS DATASET [38], THE STANFORD DOGS

DATASET [37], AND THE UCSD-BIRDS DATASET [36]

C. Evaluation of the Generality of Proposed FSCR-CNN
Model

To verify the generality and superiority of our proposed
FS-CNN and CR-CNN model over the CNN model, we also
apply them on other fine-grained datasets: the Oxford Flowers
[38], the Stanford Dogs [37] and the Caltech-UCSD Birds [36].
Oxford Flowers dataset consists of 102 different flower cate-

gories covering 40 to 258 images per category. Follow the data
augmentation method provided by [49], we build 16 represen-
tatives for each image without segmentation (original image, 5
crops, 2 rotation and their mirrors). The top-1 and top-5 accura-
cies reported for CNN, FS-CNN, CR-CNN and FSCR-CNN are
listed in the second and third column of Table III. The existence
of background with green grasses affects the color of flowers.
Nevertheless, color component is still of a certain importance
for classifying flowers. FS-CNN and CR-CNN both perform
better than CNN, and the FSCR-CNN achieves the best.
Stanford Dogs dataset contains over 20,000 annotated images

of 120 breeds of dogs. We apply the bounding box annotations
for both training and testing procedure as indicated in [11]. For
all CNN networks, we randomly crop around the bounding box
regions and keep the crops with . Eventually, the data
augmentation is done by making an average of 9 representa-
tions for each training image. The fourth and fifth column of
Table III shows the comparisons of the top-1 and top-5 accu-
racies for different CNN models. The proposed CR-CNN out-
performs CNN with at least 12% improvement, which even sur-
passes the previously published results (see Table IV). However,
FS-CNN is not helpful in improving the performance. This is
due to the reason that the color is not a sensitive feature for
dogs. In this dataset, some dogs even wear clothes or heavily
occluded. Therefore, in the following experiments for dogs, we
will not evaluate the FS-CNN and FSCR-CNN models unless
otherwise specified.
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TABLE IV
COMPARISONS WITH OTHER LEADING FINE-GRAINED OBJECT RECOGNITION

APPROACHES ON THE STANFORD DOGS DATASET [37]

TABLE V
TOP-1 AND TOP-5 ACCURACY (%) OF CNN-S BASED ARCHITECTURES

ON THE OXFORD FLOWERS DATASET [38], THE STANFORD DOGS
DATASET [37], AND THE UCSD-BIRDS DATASET [36]

Caltech-UCSD Birds-200-2011 dataset contains 11,788
annotated images of 200 bird species. A total of 5994 images
are used for training and the rest 5794 images are used for
evaluation. Like the Oxford Flowers dataset, we follow the
data augmentation method provided by [49]. Results are shown
in the last two columns of Table III. Like flowers, color is an
important component for classifying birds. Therefore, FS-CNN
is also helpful for bird recognition. Compared with CNN,
FSCR-CNN improves the recognition accuracy significantly
by 10% for Top-1 accuracy.
Nowadays different CNN architectures have been designed

[32], [27], [31]. We also embed our proposed Feature Selection
or joint Classification-Regression on a well performed architec-
ture CNN-S [27]. Similarly, the corresponding networks are de-
noted as FS-CNN-S, CR-CNN-S and FSCR-CNN-S. CNN-S is
similar to the OverFeat structure [34], while unlike OverFeat
network, less filters are applied in the 5th convolutional layer
and a local response normalization layer is added after the 1st
convolutional layer rather than contrast normalization. In order
to update our proposed FSCR-CNN on recent networks, we also
adopt the GoogLeNet [31] (the latest released pre-trained model
in MatConvNet toolbox [59]). For GoogLeNet, we denote the
original network as CNN-G, and the proposed corresponding
network is FSCR-CNN-G.
Table V shows the performance comparisons among

FS-CNN-S, CR-CNN-S, FSCR-CNN-S and CNN-S on the Ox-
ford Flowers dataset and the UCSD-Birds dataset, as well as the
comparison between CR-CNN-S and CNN-S on the Stanford
Dogs dataset. Again, the CR-CNN-S model performs better on
these fine-grained object datasets, with over 4% increase in ac-
curacy compared with CNN-S. FS-CNN-S and FSCR-CNN-S
are able to achieve better performances on the flower and bird
dataset. Compared with CNN-S, FSCR-CNN-S achieves over
5% improvement in accuracy. The comparisons of CNN-G
with FSCR-CNN-G for the three datasets are summarized in
Table VI. We observe that the improvements in classification

TABLE VI
COMPARISONS OF CNN-G AND FSCR-CNN-G ON THE OXFORD
FLOWERS DATASET [38], THE STANFORD DOGS DATASET [37],

AND THE UCSD-BIRDS DATASET [36]

TABLE VII
COMPARISONS OF HANDBAG RECOGNITION ACCURACIES ON DIFFERENT

FRAMEWORKS OF CNN-S AND CNN-G-BASED ARCHITECTURE

accuracy are not limited to CNN structures, as the accuracies
are further boosted by over 5%.
CNN-S and CNN-G could also be incorporated into our

proposed framework (to replace CNN) for handbag recog-
nition. Table VII compares our proposed framework (i.e.,
Symmetry-based EdgeBox + CNN-S (or CNN-G) detection
+ FSCR-CNN-S (or FSCR-CNN-G) classification) with the
baseline structure (i.e., EdgeBox + CNN-S (or CNN-G) classi-
fication). It can be seen that our proposed framework can boost
the handbag recognition performance by more than 10%.

VI. CONCLUSION
In this paper, we design a novel framework to recognize

handbag models. In this framework, we propose to incor-
porate the symmetry property of the handbag for extracting
handbag proposals. Then each proposal is fed into a CNN
detection model and a proposed FSCR-CNN classification
model. FSCR-CNN model attenuates the illumination changes
and inter-class similarity among handbags. Proposal detection
scores and classification scores are eventually combined by a
conditional probability model to further improve the perfor-
mance of handbag recognition. Extensive experiments on our
newly constructed handbag dataset verify the advantages of
each component of our framework and shows that it achieves
94.48% in accuracy for recognizing handbags. In addition,
FS-CNN is shown to be helpful at recognizing color sensitive
fine-grained objects (3% improvement on the handbag dataset,
2% improvement on the Oxford Flowers dataset and 5% im-
provement on the UCSD-Birds dataset) and CR-CNN performs
fairly well on fine-grained object recognition tasks, with 8%
improvement for the handbag dataset, 4% improvement for the
Oxford Flowers dataset, 12% improvement for the Stanford
Dogs dataset and 7% improvement for the UCSD-Birds dataset.
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