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ABSTRACT

Traditional supervised Multiple-Instance Learning (MIL) has
served as an important tool for a wide range of vision appli-
cations, for instance, image classification, object detection,
and visual tracking. In this paper, we move forward one step
further to tackle unsupervised computer vision problems by
proposing an unsupervised multiple-instance learning algo-
rithm, termed UnMIL. Different from classical MIL, our pro-
posed unsupervised MIL does not require any manual anno-
tations on neither bags nor instances. Given a collection of
bags without any labels, our goal is to jointly optimize the
bag label and instance label in a unified framework under the
constraint of Noisy-OR model. The proposed UnMIL can be
easily applied to object discovery in wild images by treat-
ing the object proposals extracted from images as instances
and the according images as bags. Extensive experiments on
MUSK1 & MUSK2, which is popularly used in MIL litera-
ture, on Oxford5k dataset for instance search, and on Object
Discovery dataset for object co-localization, demonstrate the
effectiveness of the proposed UnMIL.

Index Terms— Unsupervised Learning, Multiple-
Instance Learning, Object discovery, Image search

1. INTRODUCTION

Exploring and analyzing large scale visual data has received
a sustained attention in computer vision, especially in this big
data era where there are millions of GB visual data are up-
loaded to websites such as Flickr and Facebook. The concrete
tasks for exploring visual data include: image/video classifi-
cation, object detection, image search, object co-localization,
etc. To get satisfactory results for these tasks, a large body
of fully/strongly annotated data is required during training
phase. However, manually labeling the presence of objects
and even their locations in visual data is time-consuming, ex-
pensive and laborious. Therefore, designing algorithms with
weak supervision or even no supervision has been of great
interest in recent years.
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is supported by the National Research Foundation, Singapore, and the Info-
comm Media Development Authority, Singapore.

Multiple-Instance Learning (MIL), which was firstly pro-
posed by [1] for classifying molecules in the context of drug
design, are popularly applied to computer vision tasks. In
MIL, training samples are usually given in the form of bags,
and each bag consists of multiple instances (see Fig.1). In
contrast to traditional supervised learning, in classical MIL
[2, 3, 4, 5, 6] the labels are only provided for bags to indicate
the positive or negative attribute. A bag is labeled positive if
there exists at least one positive instance in it, and is negative
if all of the instances contained in it are negative. This set-
ting can be easily transferred to weakly-supervised learning
in computer vision, e.g., weakly-supervised object detection,
where each image can be seen as a bag and object proposals
extracted from images as instances. Although enjoying pop-
ular applications in weakly-supervised computer vision, tra-
ditional MIL methods haven’t been extended to unsupervised
problems such as instance search and object co-localization
due to the requirement of bag labels. Thus, it comes to the
question: if there is no label of the bags and instances, can we
still differentiate positive and negative bags from them?

To answer this problem, in this work we study unsuper-
vised MIL. The difference between traditional MIL and the
unsupervised MIL is illustrated in Fig.1. The supervised MIL
is usually formulated as a classification problem with the la-
beled training bags, however the scenario is much more differ-
ent and difficult for unsupervised MIL where no supervision
could be utilized directly. Unsupervised MIL is also more
complex than traditional single-instance unsupervised learn-
ing due to the inherent ambiguity in MIL. The advantages
of unsupervised MIL are obvious: (1) the unlabeled data are
much easier and cheaper to obtain; (2) unsupervised learning
could help find the inherent structure of a data set.

After fully understanding the characteristics of unsuper-
vised MIL, we propose a novel algorithm, termed UnMIL.
Given unlabeled input data, the proposed UnMIL aims to pre-
dict both bag and instance labels. Specifically, we present a
novel way to transform the general unsupervised MIL prob-
lem into a constrained sub-graph mining problem based on
the assumption that the positive instances are more com-
mon since the negative ones are usually diverse in their
own (see Fig. 1). The proposed UnMIL is a general method
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Fig. 1. Comparison of supervised MIL with unsupervised MIL.
With labels in training data, the supervised MIL methods are usu-
ally formulated as classification problems. The unsupervised MIL
problems could be solved based on the assumption that the positive
instances appear more frequently than negative ones. (Better viewed
in color.)

without strict constraint on the ratio of positive to negative
bags/instances. In addition, different from previous MIL
methods which focus on constructing learners either for clas-
sifying bags or for instances, the proposed UnMIL is a joint
model that can simultaneously optimize the bag labels and
instance labels.

To validate the effectiveness of the proposed UnMIL, we
conduct experiments from two aspects: (1) comparing with
classical MIL methods on two popularly used benchmarks
in the MIL literature, MUSK1 and MUSK2 [1]; (2) com-
paring with state-of-the-art methods on the application of in-
stance search and object co-localization on Oxford5k build-
ing dataset [7] and Object Discovery dataset [8], respectively.
Essentially, the fundamental problems of the two applications
are both object discovery. The difference is that the desired
object is given as a query in instance search while it needs to
be discovered automatically in object co-localization. Com-
mon object discovery is also the fundamental problem of
computer vision, thus our proposed UnMIL has more poten-
tials in computer vision applications.

2. METHOD

In this section, we will firstly introduce our unsupervised MIL
algorithm, then give an example to show how to apply the
proposed method to common object discovery.

2.1. MI Assumption

We use the following notations throughout this paper. Let
B = {B1, B2, . . . , BN} be a set of N bags, each of which
contains several instances: Bi = {xi,1,xi,2, . . . ,xi,ni},
xi,k ∈ Rd. Each bag Bi is associated with a bag label
gi ∈ {0, 1} and each instance is associated with an instance

label fi,k ∈ {0, 1}, where 0, 1 represent negative and posi-
tive label, respectively. The relation between bag label and
instance labels follows the Noisy-OR model:

gi =

{
1 if ∃ fi,k = 1,

0 if ∀ fi,k = 0.
(1)

For traditional MIL algorithms, bag labels {gi}Ni=1 are usually
given and the goal is to train a classifier based on these la-
beled bags. Since the majority of methods in the literature are
evaluated by the bag-level classification accuracy, the key of
designing classifiers is to achieve high bag-level performance.
However, in many practical applications, predicting instance
labels is as important as predicting bag labels. In this paper,
we tackle a much more challenging scenario where neither the
bag labels nor instance labels are known, and we will predict
both instance labels and bag labels simultaneously.

2.2. Unsupervised MIL

In this part, we elaborate the proposed unsupervised MIL
algorithm, UnMIL. Given a collection of bags without any
supervision, our goal is to simultaneously predict the labels
for bags and instances. We formulate the task as a con-
strained sub-graph mining problem, where the graph is built
based on all the given instances with nodes and edges respec-
tively corresponding to instances and their similarities. To
simultaneously predict the bag and instance labels, we in-
corporate the regularization term on bags so that the nega-
tive bags can significantly avoid being selected. We begin
by introducing the terms in our objective function, i.e., the
nodes and edges of the graph, which enable us to jointly op-
timize the bag labels and instance labels. Since the graph
is built based on instances from all bags, we concatenate all
instances into B = {x1,x2, . . . ,xM} to reduce notation con-
fusion. Then the instance labels can be denoted by f ∈ RM ,
M =

∑N
i=1 ni is the total number of instances from the given

dataset.
Node Confidences. Node confidence is defined as the

probability of being positive instance. Generally, the node
confidences represent some pieces of prior knowledge of the
instances that can be observed, e.g., the frequency of key
words in the text recognition task, the saliency of the fore-
ground in the object discovery task, and the similarity to the
given query. We use {ci,k}N,ni

i,k=1 to indicate the instance confi-
dence of being positive, c ∈ RM is concatenated by instances
confidences from all bags.

Edges of Graph. We encourage instances with similar
appearance to have the same label through a similarity ma-
trix. It is noted that the measurement for different features or
different tasks varies a lot. For example, χ2 distance is more
suitable for Histogram-based features, while l2 distance is
more popular for measuring features extracted from DCNN.
Therefore, the edges of the graph, i.e., the similarities be-
tween nodes, are also determined data-dependently. Here we



use W ∈ RM×M , where Wk,l ∼ similarity(xk,xl), to de-
note the similarity matrix.

Index Matrix. We denote a binary matrix A ∈ RM×N

to record the source bags of instances when building a graph,
where Ak,i = 1 if the kth instance is from the ith bag. Then
the following equation must hold: A>f = g′, where {g′i}Ni=1

is the number of positive instances in each bag. Following the
MIL constraints, we have that g = sign(g′). In some practi-
cal applications, such as object discovery and image retrieval,
there is usually only one positive instance in each positive
bag. In such a case g′ is also binary and follows g′ = g.

Joint Formulation. Based on the terms presented above,
we build the following sub-graph mining problem:

min
f ,g′

− 2c>f + λf>Lf + ‖g′‖1

s.t. f ∈ {0, 1}M ,
A>f = g′.

(2)

where the Laplacian matrix L is defined as L = D −W , in
whichW is similarity matrix defined above,D is the diagonal
matrix in which Dj,j =

∑M
k=1Wj,k. The linear term c>f

aims at maximizing the cumulative score of the selected sub-
graph. The quadratic term f>Lf is to minimize the negative
instances by emphasizing more on the edge connections with
higher weights, and the parameter λ controls the influence of
the connectivity. The regularization term ‖g′‖1 attempts to
avoid negative bags being selected.

Compared to previous methods which separately train
models based on bags or instances, the proposed UnMIL is
able to eliminate the false positive instances by regularizing
on the bags via the joint formulation of bags and instances.
In addition, different from previous methods which usually
put efforts on predicting bag labels, we attach importance to
both bags and instances. The necessity of prediction both is
a crucial issue in computer vision tasks. For example, in the
field of object discovery from images or videos, the images
or frames are usually regarded as bags, and the patches ex-
tracted from them are regarded as instances, predicting the
patch labels is as important as predicting the image/video la-
bels. Thus, in the experiments we also evaluate the perfor-
mance of the proposed method in terms of the instances.

2.3. Optimization

To solve the sub-graph mining problems defined in Eq. (2),
we resort to the maximal flow algorithm proposed by Boykov
and Kolmogorov [9]. Although the worst case complexity
is in O(M2en), where e represents the number of edges in
the graph and n is the size of the minimum cut, it performs
efficiently in practice since the graph is rather sparse.

2.4. Application to Object Discovery

In this part, we show how to apply the proposed UnMIL to the
two popular tasks in computer vision: instance search and ob-
ject co-localization. The two problems can be easily wrapped

as MIL by treating each image as a bag, and object proposals
cropped from images as instances.

Instance Confidence. To utilize our proposed UnMIL
for object discovery, we first extract object proposals as in-
stances. It is well acknowledged that the foreground ob-
jects usually appear in high saliency regions. Thus we use
saliency as the indicator of being positive instances for object
co-localization. For instance search, the node confidence can
be achieved by measuring the similarities of reference patches
to the query.

Similrity Matrix. Given instance representations which
are extracted by a pretrained CNN model, we can calcu-
late the similarity matrix W based on l2 distance: Wk,l =
exp(−‖xk − xl‖2). For object co-localization, the similarity
matrix is calculated on all instances as edges of the graph,
while for instance search, it is calculated on all instances
from references. Since the number of positive instances ac-
counts for only a small proportion of the total instances, the-
oretically the similarity matrix should be sparse. Based on
such an observation, the similarity Wk,l is set to be 0 when
xk ∈ NK(xl) and xl ∈ NK(xk) are not satisfied simulta-
neously, where NK(·) means the nearest K instances. In this
paper, we always fix K as the number of bags.

3. EXPERIMENTS

To evaluate the performance of our proposed method, we
compare with several representative supervised MIL algo-
rithms, such as DD [2], EM-DD [3], citation(k)-NN [4], mi-
SVM and MI-SVM [5] and RMI-SVM [10], on two MIL
benchmarks, MUSK1&MUSK2 [1]. We then apply the pro-
posed UnMIL to instance search and object co-localization,
on Oxford5k building dataset [7] and Object Discovery
dataset [8], respectively. In the following, we use “UnMIL-
c” to denote the setting where the results are only determined
by node confidences.

3.1. Ablation Studies

Effectiveness of each term. To visualize the effectiveness of
our proposed UnMIL algorithm, we run a test experiment on
some simulated 2D data points (see Fig.2(a)). In this simula-
tion experiment, the node confidence is set as its density, and
the similarity matrix is calculated by Wk,l = exp(−‖xk −
xl‖2). The affinity graph is constructed in the same way as
described in Section 2.2, and the results are shown in Fig. 2.
Each mark represents an instance and the instances with the
same mark are from the same bag. There are 10 bags in total.
The first column shows the ground-truth positive and negative
instances (Top) and bags (Bottom) in green and black, respec-
tively. In order to show the relative importance of each part
in the affinity graph formulated in Eq. (2), we display the re-
sults, which are optimized based on the nodes only (c) and on
the nodes and edges (linear and Laplacian term in Eq. (2)), in
the second and third columns. The results using the joint ob-
jective (Eq. (2)) are visualized in the last column. Comparing



(a) Detailed characteristics for MUSK1 & MUSK2.
# bag

Dataset # attr. # pos. # neg. # total # instance
MUSK1 166 47 45 92 476
MUSK2 166 39 63 102 6,598

(b) Comparison to classical MIL algorithms (Acc(%)).

Method MUSK1 MUSK2
DD [2] 88.9 82.5

EM-DD [3] 84.8 84.9
citation(k)-NN [4] 92.4 86.3

mi-SVM [5] 78.0 70.2
MI-SVM [5] 80.4 77.5

RMI-SVM [10] 80.8 82.4
UnMIL-c 76.1 73.5
UnMIL 89.1 83.3

Table 1. Introduction and Results of MUSK1 & MUSK2.

the second and third column we can find that with the Lapla-
cian term, some negative instances with higher density can be
removed (highlighted in red circle). From the third and last
column we can see that with the regularization term, the out-
lier instances near the positive ones can be further eliminated.

Influence of paramter λ. We evaluate the effects of
the parameter λ using MUSK1 and MUSK2, which consist
of molecule (bag) and its various conformations (instances),
only bag-level labels are provided. The goal is to predict
whether a new drug molecule can bind well to a target pro-
tein. The detailed characteristics of the two datasets are listed
in Tabel 1(a). For both datasets, we use the instance den-
sity as node confidence c, and the similarity between any
two conformations is calculated using Wk,l = exp(−‖xk −
xl‖2). We tune λ by uniformly sampling 10 values between
[min Eq.(4)
max Eq.(5) ,

max Eq.(4)
min Eq.(5) ], which leads to λ ∈ [0, 16] for MUSK1

& MUSK2. From Fig.2(b), we can see that the classification
accuracy will increase when appropriate edge information is
incorporated. Table 1(b) shows the average prediction accu-
racy in terms of bag-level, the results from literature are re-
ported in their papers. Although all compared methods are
supervised, our unsupervised algorithm, UnMIL, outperforms
all methods except citation(k)-NN on MUSK1, and is also
inferior to EM-DD on MUSK2. The huge gap between “Un-
MIL-c” and “UnMIL” ( ∼ 13% on MUSK1 and ∼ 10% on
MUSK2) demonstrates the effectiveness of the proposed joint
algorithm.

3.2. Instance Search

Instance search is one of the most popular problems in com-
puter vision. The straightforward solution is to compute the
similarity between the query object and all reference images,
then the results are achieved by ranking and thresholding the
reference images according to the similarities. Although good
performance has been observed, the results can be further im-
proved by incorporating the interdependency between refer-
ence images. The motivation is obvious.If a reference I is

Method Dimension mAP
Babenko et al. [11] 256 65.7

Tolias et al. [12] 512 77.3
Arandjelovic et al. [13] 256 63.5
Radenovic et al. [14] 512 77.0/80.1
Rezende et al. [15] 512 64.1

Yu et al. [16] 512 73.9
R-MAC: UnMIL-c 512 77.6
R-MAC: UnMIL 512 80.2
MAC: UnMIL-c 512 73.9
MAC: UnMIL 512 76.3

Table 2. The results of instance retrieval on Oxford5k.

associated with a query Q, then it is possible that the refer-
ences which enjoy high similarity with I may also be asso-
ciated with Q. On the contrary, this can help to remove false
positive references which enjoy high similarity to query but
do not affiliate the query, if most of the neighbors have large
distance to the query.

We evaluate our proposed UnMIL on this task in the Ox-
ford5k building dataset [7], which is composed of 5063 refer-
ence images and 55 queries. We extract 300 object proposals
from each reference image, then represent each proposal by
the maximum activation of convolutions (MAC) feature and
regional maximum activation of convolutions (RMAC) fea-
ture [12]. The final dimensions of the two kinds of features
are both 512. The node confidence and similarity matrix are
calculated following Section 2.4. Let P ∈ Rd×M be the fea-
tures of object proposals extracted from all reference images
and q ∈ Rd be the feature of query object, the node confi-
dence is expressed as c = q>P, c ∈ RM and the similarity
matrix W = P>P,W ∈ RM×M . Note that our proposed
UnMIL could be easily tailored to the problem of instance
search, while classical supervised MIL algorithms, which re-
quire bag/image labels for training, can not be applied to such
a problem. Thus, we only compare with some representa-
tive studies in the literature of instance search. From Table 2,
we can see that with similar feature dimension, our UnMIL
using R-MAC can achieve the state-of-the-art performance.
Compared with the results of using only the similarity be-
tween the query and reference images (“UnMIL-c”), the Un-
MIL framework can increase about 3% with both MAC and R-
MAC, which demonstrates the effectiveness of the proposed
UnMIL framework. The examples of search results are shown
in Fig.3.

3.3. Object Co-localization in Wild Images

The problem common object discovery and localization from
real-world images is one of the most popular topics in com-
puter vision. We perform this task in the Object Discovery
dataset [8], which contains 300 images evenly separated into
three categories: airplane, car, and horse. We generate 300
object proposals from each image, and then extract the 4096-
dimensional feature vector using DCNN [17]. The node con-
fidence and similarity matrix are calculated following Sec-



(a) The influence of each term w.r.t. instance-level (top) and bag-level (bottom). From left to right:
groundtruth, node only, node & edge, and UnMIL.
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Fig. 2. The ablation studies on each part of the proposed UnMIL.
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Fig. 3. Examples of instance search results.
(a) Comparison to classical MIL algorithms (Acc(%)).

bag instance
Method Airplane Car Horse Airplane Car Horse
DD [2] 68.3 83.4 71.4 65.9 75.3 72.6

EM-DD [3] 69.5 83.1 72.1 70.2 77.6 70.5
citation(k)-NN [4] 81.3 76.1 75.8 79.2 74.7 73.6

mi-SVM [5] 81.1 88.5 75.7 76.5 77.2 73.1
MI-SVM [5] 82.3 88.0 78.6 - - -

UnMIL-c 69.8 76.0 68.2 68.4 80.0 67.9
UnMIL 82.1 87.3 84.9 79.9 87.2 79.6

(b) Comparison to state-of-the-arts (CorLoc(%)).
Method Airplane Car Horse Av.

Joulin et al. [19] 32.9 66.3 54.8 51.4
Kim et al. [20] 22.0 0.00 16.1 12.7

Joulin et al. [21] 57.3 64.0 52.7 58.0
Rubinstein et al. [8] 74.4 87.6 63.4 75.2

Cho et al. [22] 82.9 94.4 75.3 84.2
UnMIL-c 69.8 76.0 68.2 71.3
UnMIL 82.1 87.3 84.9 84.8

Table 3. Results on Object Discovery dataset.

tion 3.4. We manually label the object proposals/instances as
positive if the criteria area(Pi∩Pgt)

area(Pi∪Pgt)
> 0.5 is satisfied, and if

area(Pi∩Pgt)
area(Pi∪Pgt)

< 0.3, then the instance is labeled negative.
Comparison to classical MIL algorithms. Table 3(a)

shows the classification accuracy (%) in terms of instance and
bag level. The experiments for DD, EM-DD, citation(k)-NN,
mi-SVM and MI-SVM are implemented based on the MIL
library [18]. It can be seen that the learning ability of our Un-
MIL outperforms the majority classical supervised MIL algo-
rithms by a great margin, especially in the instance level.

Comparison to state-of-the-arts. Table 3(b) shows the

Examples of co-localization on the Object Discovery Dataset 

Fig. 4. Examples of successful co-localization results.
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Fig. 5. Influence of various pos.-to-neg. ratios in terms of bags
(Left) and instance (Right).

comparison of state-of-the-art cosegmentation [20, 19, 21]
and colocalization [8, 23, 22] methods and the proposed Un-
MIL. The extensively used correct localization (CorLoc) met-
ric is adopted for a fair comparison. CorLoc (%) is defined
as the percentage of images correctly localized according to
the PASCAL criteria: area(Pi∩Pgt)

area(Pi∪Pgt)
> 0.5, where Pi is the

predicted box (instance) and Pgt is the ground-truth box.
From table 3(b) we can see that our method is comparable
to the state-of-the-art [22], and outperforms other methods by
a large margin. Fig.4 shows some examples achieved by our
UnMIL.

Influence of various pos.-to-neg. ratios of bags and
instances. In order to demonstrate the robustness of our
proposed UnMIL algorithm, we conduct experiments with
the proportion of positive bags and instances varying from
30% ∼ 80%. Specifically, the evaluation size of bags and
instances contained in each bag is fixed as 100. The positive
bags are selected from the Object Discovery dataset and the
negative bags are randomly collected from Internet, while the



positive and negative instances are selected from our manu-
ally labeled object proposal pool. When evaluating the in-
fluence of bag distribution, we fix the proportion of positive
instances in each positive bag as 50%. Similarly, when evalu-
ating the influence of instance distribution, we fix the propor-
tion of positive bags as 50%. From Fig. 5 we can see that both
the bag- and instance-level predictions are rather stable over
high positive ratios, and the performance is still satisfactory
on bag-level evaluation even when the positive ratio decreases
to 30%. It suggests that our proposed UnMIL can work well
when we have enough positive bags and each positive bag
contains enough positive instances.

4. CONCLUSION

In this paper, we propose a novel unsupervised MIL algorithm
and apply it to computer vision problems. The proposed Un-
MIL is a joint model that can simultaneously inference the
labels of bags and instances. It is also a general algorithm
that can be easily applied to computer vision problems, such
as instance search and object co-localization. To evaluate the
proposed method, we conduct extensive experiments both on
MIL benchmarks and also on the application of the common
object discovery in real-world images. The superior perfor-
mance compared with classical MIL methods and the-state-
of-arts demonstrates the advantages of our proposed unsuper-
vised method, UnMIL.
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