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Abstract In the conventional approaches for action and
event recognition, sufficient labelled training videos are
generally required to learn robust classifiers with good
generalization capability on new testing videos. However,
collecting labelled training videos is often time consum-
ing and expensive. In this work, we propose new learning
frameworks to train robust classifiers for action and event
recognition by using freely available web videos as train-
ing data. We aim to address three challenging issues: (1) the
training web videos are generally associated with rich textual
descriptions, which are not available in test videos; (2) the
labels of trainingwebvideos are noisy andmaybe inaccurate;
(3) the data distributions between training and test videos
are often considerably different. To address the first two
issues, we propose a new framework called multi-instance
learning with privileged information (MIL-PI) together with
three new MIL methods, in which we not only take advan-
tage of the additional textual descriptions of training web
videos as privileged information, but also explicitly copewith
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noise in the loose labels of training web videos. When the
training and test videos come from different data distribu-
tions, we further extend our MIL-PI as a new framework
called domain adaptive MIL-PI. We also propose another
three new domain adaptation methods, which can addition-
ally reduce the data distribution mismatch between training
and test videos. Comprehensive experiments for action and
event recognition demonstrate the effectiveness of our pro-
posed approaches.

Keywords Learning using privileged information · Multi-
instance learning · Domain adaptation · Action recognition ·
Event recognition

1 Introduction

There is an increasing research interest in developing new
action and event recognition technologies for a broad range of
real-world applications including video search and retrieval,
intelligent video surveillance and human computer inter-
action. While the two terms, actions and events, are often
interchangeably used in several existing works (Aggarwal
and Ryoo 2011; Bobick 1997), high-level events generally
consist of a sequence of interactions or stand-alone actions
(Jiang et al. 2013).

It is still a challenging computer vision task to recognize
actions and events from videos due to considerable camera
motion, cluttered backgrounds and large intra-class varia-
tions. Recently, a large number of approaches have been
proposed for action recognition (Hu et al. 2009; Wang et al.
2011a;Yu et al. 2010; Zhu et al. 2009; Le et al. 2011; Lin et al.
2009; Shi et al. 2004; Zeng and Ji 2010; Wang et al. 2011b;
Tran and Davis 2008; Morariu and Davis 2011) and event
recognition (Chang et al. 2007; Xu and Chang 2008). Inter-
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Fig. 1 Three challenging issues when learning from loosely labelled
web videos: a the training web videos are additionally associated with
rich textual descriptions, b the labels of relevant training web videos

retrieved using the textual query “sports” are noisy, and c there is domain
distribution mismatch between the training web videos and test videos

ested readers can refer to the recent surveys (Aggarwal and
Ryoo 2011) and (Jiang et al. 2013) formore details. However,
all the above methods follow the conventional approaches,
in which a set of action/event lexicons are first defined and
then a large corpus of training videos are collected with the
action/event labels assigned by human annotators.

Collecting labelled training videos is often time-
consuming and expensive. Meanwhile, rich and massive
social media data are being posted to the video sharing
websites like Youtube everyday, in which web videos are
generally associated with valuable contextual information
(e.g., tags, captions, and surrounding texts). Consequently,
several recent works (Duan et al. 2012d; Chen et al. 2013a)
were proposed to perform keywords (also called tags) based
search to collect a set of relevant and irrelevant web videos,
which are directly used as positive and negative training data
for learning robust classifiers for action/event recognition.
However, those works cannot effectively utilize the textual
descriptions of training web videos because the test videos
(e.g., the videos in the HMDB51 dataset) do not contain such
textual descriptions.

In this work, we propose new learning frameworks for
action and event recognition by using freely available web
videos as trainingdata. Specifically, as shown inFig 1,we aim
to address three challenging issues (1) the trainingwebvideos
are usually accompaniedwith rich textual descriptions, while
such textual descriptions are not available in the test videos;
(2) the labels of training web videos are noisy (i.e., some
labels are inaccurate); (3) the feature distributions of training
and test videos may have very different statistical properties
such as mean, intra-class variance and inter-class variance
(Duan et al. 2012d, a).

Toutilize the additional textual descriptions from the train-
ing web videos, we extract both visual features and textual
features from the training videos. While we do not have tex-
tual features in the test videos, such textual features extracted
from the training videos can still be used as privileged infor-
mation, as shown in the recent work (Vapnik and Vashist

2009). Their work is motivated by human learning, where
a teacher provides the students with hidden information
through explanations, comments, comparisions, etc. (Vapnik
and Vashist 2009). Similarly, we observe that the surround-
ing textual descriptions more or less describe the content of
training data. So the textual features can additionally provide
hidden information for learning robust classifiers by bridging
the semantic gap between the low-level visual features and
the high-level semantic concepts.

To cope with noisy labels of relevant training samples,
we further employ the multi-instance learning (MIL) tech-
niques because the MIL methods can still be used to learn
classifiers even when the label of each training instance is
unknown. Inspired by the recent works (Vijayanarasimhan
and Grauman 2008; Li et al. 2011, 2012a), we first partition
the training web videos into small subsets. By treating each
subset as a “bag” and the videos in each bag as “instances”,
the MIL methods such as Sparse MIL (sMIL) (Bunescu and
Mooney 2007), mi-SVM (Andrews et al. 2003) and MIL-
CPB (Li et al. 2011) can be readily adopted to learn robust
classifiers by using loosely labelled web videos as training
data.

To address the first two challenging issues for action/event
recognition, we propose our first framework called multi-
instance learning with privileged information (MIL-PI). In
this framework, we not only take advantage of the addi-
tional textual features from training web videos as privileged
information, but also explicitly cope with noise in the loose
labels of relevant training web videos. We also develop
three newMIL approaches called sMIL-PI, mi-SVM-PI, and
MIL-CPB-PI based on three existing MIL methods sMIL,
mi-SVM and MIL-CPB, respectively. Moreover, we also
observe that the action/event recognition performance could
degradewhen the training and test videos come fromdifferent
data distributions, which is known as the dataset bias prob-
lem (Torralba and Efros 2011). To explicitly reduce the data
distribution mismatch between the training and test videos,
we further extend our MIL-PI framework by additionally
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introducing a Maximum Mean Discrepancy (MMD) based
regularizer, which leads to our new MIL-PI-DA framework.
We further extend sMIL-PI, mi-SVM-PI, and MIL-CPB-
PI as sMIL-PI-DA, mi-SVM-PI-DA and MIL-CPB-PI-DA,
respectively.

We conduct comprehensive experiments to evaluate our
new approaches for action and event recognition. The results
show that our newly proposedmethods sMIL-PI,mi-SVM-PI
andMIL-CPB-PI not only improve the existingMILmethods
(i.e., sMIL, mi-SVM and MIL-CPB), but also outperform
the learning methods using privileged information as well
as other related baselines. Moreover, our newly proposed
domain adaptation methods sMIL-PI-DA, mi-SVM-PI-DA
and MIL-CPB-PI-DA are better than sMIL-PI, mi-SVM-PI
and MIL-CPB-PI, respectively, and they also outperform the
existing domain adaptation approaches.

In the preliminary conference version of this paper
(Li et al. 2014b), we only discussed the bag-level MIL
approaches sMIL-PI and sMIL-PI-DA for image categoriza-
tion and image retrieval. In this work, we present a more
general MIL-PI framework, which additionally incorporates
the instance-level MIL methods, such as mi-SVM (Andrews
et al. 2003) and MIL-CPB (Li et al. 2011). We also pro-
pose a new MIL-PI-DA framework and two more domain
adaptation methods mi-SVM-PI-DA and MIL-CPB-PI-DA.
Moreover, we additionally evaluate our newly proposed
methods for action and event recognition on the benchmark
datasets.

2 Related Work

2.1 Learning from Web Data

Researchers have proposed effective methods to employ
massive web data for various computer vision applications
(Schroff et al. 2011; Torralba et al. 2008; Fergus et al. 2005;
Hwang and Grauman 2012). Torralba et al. (Torralba et al.
2008) used a nearest neighbor (NN) based approach for
object and scene recognition by leveraging a large dataset
with 80 million tiny images. Fergus et al. (2005) proposed
a topic model based approach for object categorization by
exploiting the images retrieved from Google image search,
while Hwang and Grauman (2012) employed kernel canon-
ical correlation analysis (KCCA) for image retrieval using
different features. Recently, Chen et al. (2013b) proposed
the NEIL system for automatically labeling instances and
extracting the visual relationships.

Our work is more related to Vijayanarasimhan and Grau-
man (2008); Duan et al. (2011); Li et al. (2012a, b, 2011);
Leung et al. (2011), which used multi-instance learning
approaches to explicitly cope with noise in the loose labels
of web images or web videos. In particular, those works first

partitioned the training images into small subsets. By treat-
ing each subset as a “bag” and the images/videos in each bag
as “instances”, they formulated this task as a multi-instance
learning problem. The bag-based MIL method Sparse MIL
as well as its variant were used in Vijayanarasimhan and
Grauman (2008) for image categorization, while an instance-
based approach called MIL-CPB was developed in Li et al.
(2011) for image retrieval. Moreover, a weighted MIL-
Boost approach was proposed in Leung et al. (2011) for
video categorization. Besides the abovemulti-instance learn-
ing methods, some other approaches were also proposed
to cope with label noise. For instance, Natarajan et al.
(2013) proposed two approaches to modify the loss function
for learning with noisy labels, in which the first approach
uses the unbiased estimator of loss function and the second
approach uses a weighted loss function. Bootkrajang and
Kabán (2014) proposed a robust Multiple Kernel Logistic
Regression algorithm (rMKLR),which incorporates the label
flip probabilities in the loss function. However, the works
in Vijayanarasimhan and Grauman (2008); Li et al. (2011);
Leung et al. (2011); Natarajan et al. (2013); Bootkrajang and
Kabán (2014) did not consider the additional features in train-
ing data, and thus they can only employ the visual features
for learning MIL classifiers for action/event recognition.1 In
contrast, we propose a new action/event recognition frame-
workMIL-PI by incorporating the additional textual features
of training samples as privileged information.

2.2 Learning with Additional Information

Our approach is motivated by the work on learning using
privileged information (LUPI) (Vapnik and Vashist 2009), in
which training data contains additional features (i.e., privi-
leged information) that are not available in the testing stage.
Privileged information was also used for distance metric
learning (Fouad et al. 2013), multiple task learning (Liang
et al. 2009) and learning to rank (Sharmanska et al. 2013).
However, all those works only considered the supervised
learning scenario using training data with accurate super-
vision. In contrast, we formulate a new MIL-PI framework
in order to cope with noise in the loose labels of relevant
training web videos.

Ourwork is also related to attribute based approaches (Fer-
rari and Zisserman 2007; Farhadi et al. 2009), in which the
attribute classifiers are learnt to extract themid-level features.
However, the mid-level features can be extracted from both
training and testing images. Similarly, the classeme based
approaches (Torresani et al. 2010; Li et al. 2013) were pro-
posed to use the training images from additionally annotated

1 The work in Li et al. (2011) used both visual and textual features in
the training process. However, it also requires the textual features in the
testing process.
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concepts to obtain the mid-level features. Those methods can
be readily applied to our application by using the mid-level
features as the main features to replace our current visual
features (i.e., the improved dense trajectory features (Wang
and Schmid 2013) in our experiments). However, the addi-
tional textual features, which are not available in the testing
samples, can still be used as privileged information in our
MIL-PI framework.Moreover, those works did not explicitly
reduce the data distribution mismatch between the training
and testing samples as in our MIL-PI-DA framework.

2.3 Domain Adaptation

Our work is also related to the domain adaptation methods
(Baktashmotlagh et al. 2013; Bergamo and Torresani 2010;
Fernando et al. 2013; Huang et al. 2007; Gopalan et al. 2011;
Gong et al. 2012; Kulis et al. 2011; Duan et al. 2012a; Bruz-
zone and Marconcini 2010; Duan et al. 2012d, c; Li et al.
2014a). Huang et al. (2007) proposed a two-step approach by
re-weighting the source domain samples. For domain adap-
tation, Kulis et al. (2011) proposed a metric learning method
by learning an asymmetric nonlinear transformation, while
Gopalan et al. (2011) and Gong et al. (2012) interpolated
intermediate domains. SVM based approaches (Duan et al.
2012a; Bruzzone andMarconcini 2010; Duan et al. 2012d, c)
were also developed to reduce the data distributionmismatch.
Some recent approaches aimed to learn a domain invariant
subspace (Baktashmotlagh et al. 2013) or align two sub-
spaces from both domains (Fernando et al. 2013). Bergamo
and Torresani (2010) proposed a domain adaptation method
which can cope with the loosely labelled training data. How-
ever, theirmethod requires the labelled training samples from
the target domain,which are not required in our domain adap-
tation framework MIL-PI-DA. Moreover, our MIL-PI-DA
framework achieves the best results for action/event recogni-
tion when the training and testing samples are from different
datasets.

3 Multi-instance Learning Using Privileged
Information

For ease of presentation, in the remainder of this paper, we
use a lowercase/uppercase letter in boldface to denote a vec-
tor/matrix (e.g., a denotes a vector and A denotes a matrix).
The superscript ′ denotes the transpose of a vector or amatrix.
We denote 0n, 1n ∈ R

n as the n-dim column vectors of all
zeros and all ones, respectively. For simplicity, we also use
0 and 1 instead of 0n and 1n when the dimension is obvious.
Moreover, we use A ◦ B to denote the element-wise product
between two matrices A and B. The inequality a ≤ b means
that ai ≤ bi for i = 1, . . . , n.

3.1 Problem Statement

Our task is to learn robust classifiers for action/event recog-
nition by using loosely labelled web videos. Given any
action/event name, relevant and irrelevant web videos can
be automatically collected as training data by using tag-
based video retrieval. Those relevant (resp., irrelevant) videos
can be used as positive (resp., negative) training samples
for learning classifiers for action/event recognition. How-
ever, not all those relevant videos are semantically related
to the action/event name, because the web videos are gen-
erally associated with noisy tags. Hence, we refer to those
automatically collected web videos as loosely labelled web
videos.

Moreover, although the test videos do not contain textual
information, the additional textual features extracted from the
training videos can still be used to improve the recognition
performance. As shown in Vapnik and Vashist (2009), the
additional features that are only available in training data
can be utilized as privileged information to help learn more
robust classifiers for the main features (i.e., the features that
are available for both training and test data).

To this end, we propose a new learning framework called
multi-instance learning using privileged information (MIL-
PI) for action/event recognition, in which we not only take
advantage of the additional textual descriptions (i.e., privi-
leged information) in training data but also effectively cope
with noise in the loose labels of relevant training videos.

In particular, to cope with label noise in training data, we
partition the relevant and irrelevantweb videos into bags as in
the recent works (Vijayanarasimhan and Grauman 2008; Li
et al. 2011; Leung et al. 2011). The training bags constructed
from relevant samples are labelled as positive and those from
irrelevant samples are labelled as negative. Let us represent
the training data as {(Bl ,Yl)|Ll=1}, where Bl is a training bag,
Yl ∈ {+1,−1} is the corresponding bag label, and L is the
total number of training bags. Each training bagBl consists of
a number of training instances, i.e., Bl = {(xi , x̃i , yi )|i∈Il },
where Il is the set of indices for the instances inside Bl , xi is
the visual feature vector extracted from the i-th web video,
x̃i is the corresponding textual feature extracted from its sur-
rounding textual descriptions, yi ∈ {+1,−1} is the ground
truth label that indicates whether the i-th video is semanti-
cally related to the action/event name. Note the ground truth
label yi is unknown. Without loss of generality, we assume
the positive bags are the first L+ training bags with a total
number of n+ training instances. The total number of training
instances in all training bags is denoted as n .

In our framework, we use the generalized constraints for
theMILproblem (Li et al. 2011).As shown inLi et al. (2011),
the relevant samples usually contain a portion of positive
samples, while it is more likely that the irrelevant samples
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are all negative samples. Namely, we have

{∑
i∈Il

yi+1
2 ≥ σ |Bl |, ∀Yl = 1,

yi = −1, ∀i ∈ Il and Yl = −1,
(1)

where |Bl | is the cardinality of the bag Bl , and σ > 0 is a
predefined ratio based on prior information. In other words,
each positive bag is assumed to contain at least a portion of
true positive instances, and all instances in a negative bag are
assumed to be negative samples.

Recall the textual descriptions associated with the training
videos are also noisy, so privileged information may not be
always reliable as in Vapnik and Vashist (2009); Sharman-
ska et al. (2013). Considering the labels of instances in the
negative bags are known to be negative (Vijayanarasimhan
and Grauman 2008; Li et al. 2011), and the results after
employing noisy privileged information for the instances in
the negative bags are generally worse (see our experiments
in Sect. 5.3), we only utilize privileged information for pos-
itive bags in our methods. However, it is worth mentioning
that our method can be readily used to employ privileged
information for the instances in all training bags.

In the following,wefirstly introduce twoLUPI approaches
called SVM+ and partial SVM+ (pSVM+) that are related to
this work. Then we propose a new bag-level MIL-PI method
called sMIL-PI in Sect. 3.3 based on Sparse MIL (sMIL)
(Bunescu andMooney 2007), and also propose two instance-
level MIL-PI methods called mi-SVM-PI and MIL-CPB-PI
in Sect. 3.4 based on mi-SVM (Andrews et al. 2003) and
MIL-CPB (Li et al. 2011), respectively.

3.2 Learning using Privileged Information

Let us denote the trainingdata as {(xi , x̃i , yi )|ni=1},wherexi is
main feature for the i-th training sample, x̃i is the correspond-
ing feature representation of privileged information which is
not available for testing data, yi ∈ {+1,−1} is the class label,
and n is the total number of training samples. Here the class
label yi of each training sample is assumed to be given. The
goal of LUPI is to learn the classifier f (x) = w′φ(x) + b,
where φ(·) is a nonlinear feature mapping function. We also
define another nonlinear feature mapping function φ̃(·) for
privileged information.

SVM+: SVM+ builds up the traditional SVM by further
exploiting privileged information in training data. The objec-
tive of SVM+ is as follows,

min
w̃,b̃,w,b

1

2

(
‖w‖2 + γ ‖w̃‖2

)
+ C

n∑
i=1

ξ(x̃i ),

s.t. yi (w′φ(xi ) + b) ≥ 1 − ξ(x̃i ), ξ(x̃i ) ≥ 0, ∀i,
(2)

where γ and C are the tradeoff parameters, ξ(x̃i ) =
w̃′φ̃(x̃i ) + b̃ is the slack function, which replaces the slack
variable ξi ≥ 0 in the hinge loss in SVM. Such a slack
function plays a role of teachers in the training process (Vap-
nik and Vashist 2009). Recall the slack variable ξi in SVM
tells about how difficult to classify the training sample xi .
The slack function ξ(x̃i ) is expected to model the optimal
slack variable ξi by using privileged information, which is
analogous to the comments and explanations from teach-
ers in human learning (Vapnik and Vashist 2009). Similar to
SVM, SVM+ can be solved in the dual form by optimizing
a quadratic programming problem.

pSVM+: In some situations, privileged information may
not be available for all the training samples. Particularly,
when the training dataset contains l samples {(xi , x̃i , yi )|li=1}
with privileged information and n−l samples {(xi , yi )|ni=l+1}
without privileged information, the slack function can only
be introduced for the l training samples with privileged infor-
mation. We refer to this case of SVM+ as partial SVM+ or
pSVM+ for short. According to Vapnik and Vashist (2009),
we can formulate pSVM+ as follows:

min
w̃,b̃,w,b,η

1

2

(
‖w‖2 + γ ‖w̃‖2

)
+ C1

l∑
i=1

ξ(x̃i ) +
n∑

i=l+1

ηi ,

s.t. yi (w′φ(xi ) + b) ≥ 1 − ξ(x̃i ), ∀i = 1, . . . , l,

ξ(x̃i ) ≥ 0, ∀i = 1, . . . , l,

yi (w′φ(xi ) + b) ≥ 1 − ηi , ∀i = l + 1, . . . , n,

ηi ≥ 0, ∀i = l + 1, . . . , n, (3)

where γ and C1 are the tradeoff parameters, ξ(x̃i ) =
w̃′φ̃(x̃i ) + b̃ is the slack function, and η = [ηl+1, . . . , ηn]′
is the slack variable in the hinge loss. In fact, SVM+ can be
treated as a special case of pSVM+ when l = n. Similar
to SVM, pSVM+ can also be solved in the dual form by
optimizing a quadratic programming problem.

3.3 Bag-level MIL using Privileged Information

The bag-level MIL methods (Chen et al. 2006; Bunescu and
Mooney 2007) focus on the classification of bags. As the
labels of training bags are known, by transforming each train-
ing bag to one training sample, the MIL problem becomes
a supervised learning problem. Such a strategy can also be
applied to our MIL-PI framework, and we refer to our new
method as sMIL-PI.

3.3.1 sMIL-PI

Let us denote ψ(Bl) as the feature mapping function which
converts a training bag into a single feature vector. The fea-
ture mapping function in sMIL is defined as the mean of
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instances inside the bag, i.e., ψ(Bl) = 1
|Bl |

∑
i∈Il φ(xi ),

where |Bl | is the cardinality of the bag Bl . Recall the labels
for negative instances are assumed to be negative, so we only
apply the feature mapping function on the positive training
bags. For ease of presentation,we denote a set of virtual train-
ing samples {z j |mj=1}, in which z1, . . . , zL+ are the samples

mapped from the positive bags {ψ(B j )|L+
j=1}, the remaining

samples zL++1, . . . , zm are the instances {φ(xi )|i ∈ Il ,Yl =
−1} in the negative bags.

When there is additional privileged information for train-
ing data, we define another feature mapping function ψ̃(Bl)

on each training bag as the mean of instances inside the
bag by using privileged information, i.e., z̃ j = ψ̃(B j ) =
1

|B j |
∑

i∈I j
φ̃(x̃i ) for j = 1, . . . , L+. Based on the SVM+

formulation, the objective of our sMIL-PI can be formulated
as,

min
w,b,w̃,b̃,η

1

2

(
‖w‖2 + γ ‖w̃‖2

)
+ C1

L+∑
j=1

ξ(z̃ j ) +
m∑

j=L++1

η j ,

s.t. w′z j + b ≥ p j − ξ(z̃ j ), ∀ j = 1, . . . , L+, (4)

w′z j + b ≤ −1 + η j , ∀ j = L+ + 1, . . . ,m, (5)

ξ(z̃ j ) ≥ 0, ∀ j = 1, . . . , L+, (6)

η j ≥ 0, ∀ j = L+ + 1, . . . ,m (7)

where w and b are the variables of the classifier f (z) =
w′z + b, γ , C1 are the tradeoff parameters, η = [ηL++1,
. . . , ηm]′, the slack function is defined as ξ(z̃ j ) = w̃′z̃ j + b̃,
and p j is the virtual label for the virtual sample z j . In sMIL
(Bunescu andMooney2007), the virtual label is calculatedby
leveraging the instance labels of each positive bag. As sMIL
assumes that there is at least one true positive sample in each
positive bag, the virtual label of positive virtual sample z j
is p j = 1−(|B j |−1)

|B j | = 2−|B j |
|B j | . Similarly, for our sMIL-PI

using the generalized MIL constraints in (1), we can derive

it as p j = σ |B j |−(1−σ)|B j |
|B j | = 2σ − 1. Note the difference

between (4) and pSVM+ is that we use the bag-level features
instead of instance-level features and change the margin in
the constraint from 1 to p j .

By introducing dual variable α = [α1, . . . , αm]′ for the
constraints in (4) and (5), and also introducing dual variable
β = [β1, . . . , βL+]′ for the constraints in (6), respectively,
we arrive at the dual from of (4) as follows,

min
α,β

−p′α + 1

2
α′(K ◦ yy′)α

+ 1

2γ
(α̂ + β − C11)′K̃(α̂ + β − C11),

s.t. α′y = 0, 1′(α̂ + β − C11) = 0,

ᾱ ≤ 1, α ≥ 0, β ≥ 0, (8)

where α̂ ∈ R
L+

and ᾱ ∈ R
m−L+

are from α =
[α̂′, ᾱ′]′, y = [1′

L+ ,−1′
m−L+]′ is the label vector, p =

[p1, . . . , pL+ , 1′
m−L+]′ ∈ R

m , K ∈ R
m×m is the kernel

matrix constructed by using the visual features, K̃ ∈ R
L+×L+

is the kernel matrix constructed by using privileged infor-
mation (i.e., the textual features). The above problem is
jointly convex in α and β, and can be solved by optimiz-
ing a quadratic programming problem.

3.4 Instance-level MIL using Privileged Information

Different from the bag-levelMILmethods, the instance-level
MIL methods (Andrews et al. 2003; Li et al. 2011) directly
solve the classification problem for the instances. However,
the labels of training instances are unknown, so one needs
to infer the instance labels when learning the MIL classifier.
Inspired by the works in Andrews et al. (2003); Li et al.
(2011), we formulate the instance-level MIL-PI problem as
follows,

min
y∈Y

w̃,b̃,w,b,η

1

2

(
‖w‖2 + γ ‖w̃‖2

)

+C1

n+∑
i=1

ξ(φ̃(x̃i )) +
n∑

i=n++1

ηi , (9)

s.t. yi (w′φ(xi ) + b) ≥ 1 − ξ(φ̃(x̃i )), (10)

ξ(φ̃(x̃i )) ≥ 0, i = 1, . . . , n+, (11)

yi (w′φ(xi ) + b) ≥ 1 − ηi , (12)

ηi ≥ 0, i = n+ + 1, . . . , n, (13)

whereY = {y|y satisfies the constraints in (1)} is the feasible
set of labelings for training instances with y = [y1, . . . , yn]′
being a feasible label vector, η = [ηn++1, . . . , ηn]′, γ and
C1 are the tradeoff parameters, and ξ(φ̃(x̃)) = w̃′φ̃(x̃) + b̃
is the slack function similarly as in sMIL-PI. The difference
between (9) and pSVM+ is that the label vector y is also a
variable which needs to be optimized in (9).

Note in this formulation, we need to infer the instance
labels in the label vector y, and simultaneously learn the
classifier. It is a nontrivial mixed-integer programming prob-
lem, because the number of all possible labelings (i.e.,
|Y|) increases exponentially w.r.t. the number of positive
instances n+. In mi-SVM (Andrews et al. 2003), an iterative
approach is adopted to learn an SVM classifier and update
the label vector y by using the prediction from the learnt
classifier. In MIL-CPB (Li et al. 2011), a multiple kernel
learning (MKL) based approach is proposed to learn an opti-
mal kernel by optimizing the linear combination of the label
kernels associated with all possible label vectors. We respec-
tively apply those two strategies to our objective function
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Algorithm 1 The optimization algorithm for solving the
objective function of our mi-SVM-PI

Input: Training data {(Bl , Yl )|Ll=1} (see Sect. 3.1).
1: Initialize y = [1′

n+ ,−1′
n−n+]′.

2: repeat
3: Train f (x) = w′φ(x) + b by solving a pSVM+ problem based

on y.
4: Calculate the decision values of training instances by using the

learnt f (x).
5: Based on the decision values, obtain y that satisfies the constraints

in (1).
6: until The labeling vector y does not change.
Output: The learnt classifier f (x) = w′φ(x) + b.

in (9), and develop two instance-level MIL-PI approaches,
mi-SVM-PI and MIL-CPB-PI.

3.4.1 mi-SVM-PI

In mi-SVM-PI, we adopt the strategy in mi-SVM (Andrews
et al. 2003) and use the similar iterative updating approach to
solve our instance basedMIL-PI problem in (9). Specifically,
as shown in Algorithm 1, we first initialize the label vector y
by setting the labels of instances as their corresponding bag
labels. Then we employ the alternating optimization method
to iteratively solve a pSVM+ problem by using the current
label vectory, and infery byusing the learnt classifier f (x) =
w′φ(x) + b at the previous iteration. For any positive bag Bl

where the constraint in (1) is not satisfied, we additionally
set the labels of σ |Bl | instances with the largest decision
values in this positive bag to be positive. The above process
is repeated until y does not change.

3.4.2 MIL-CPB-PI

The instance-level MIL-PI formulation in (9) can also be
solved by optimizing an MKL problem as in MIL-CPB, as
discussed in Li et al. (2011). The main idea is to firstly relax
the duality of (9) to its tight lower bound. Then we show
that the relaxed problem shares a similar form with the MKL
problem, and thus can be similarly optimized by solving a
convex problem in the primal form.

To derive the solution of our MIL-CPB-PI method, we
absorb the bias term b in (9) into w by augmenting the
feature vector φ(xi ) with an additional dimension with its
value being 1 similarly as in Li et al. (2011). By respec-
tively introducing the dual variables α̂ ∈ R

n+
, ᾱ ∈ R

n−n+

and β ∈ R
n+

for the constraints in (10), (12), and (11), and
defining α = [α̂′, ᾱ′]′ ∈ R

n , we arrive at the dual problem

of (9) as follows,

min
y∈Y

max
(α,β)∈S

1′α − 1

2
α′(Q ◦ yy′)α

− 1

2γ
(α̂ + β − C11)′K̃(α̂ + β − C11), (14)

where Q = K + 11′ withK ∈ R
n×n being the kernel matrix

constructed by using the visual features, K̃ ∈ R
n+×n+

is
the kernel matrix constructed by using the textual features,
S = {(α,β)|1′(α̂ + β −C11) = 0, ᾱ ≤ 1,α ≥ 0,β ≥ 0} is
the feasible set.

Note that each label vector y forms a label kernel Q ◦ yy′
in the duality in (14). Inspired by Li et al. (2011), instead
of directly optimizing an optimal label kernel Q ◦ yy′, we
seek for an optimal linear combination of all possible label
kernels. We write the relaxed problem as follows,

min
d∈D

max
(α,β)∈S

1′α − 1

2
α′

(
T∑
t=1

dtQ ◦ yty′
t

)
α

− 1

2γ
(α̂ + β − C11)′K̃(α̂ + β − C11), (15)

where yt ∈ Y is the t-th label vector in the feasible set Y ,
T = |Y| is the total number of label vectors in Y , dt is
the combination coefficient of the label kernelQ ◦ yty′

t , d =
[d1, . . . , dT ]′ is the vectorwhich contains all the combination
coefficients, and D = {d|d′1 = 1,d ≥ 0} is the feasible set
of d.

Intuitively, for the optimization problem in (14), we search
for an optimal yy′ in Y , which is a set of discrete points
in the space R

n×n . The optimization problem in (14) is a
Mixed Integer Programming (MIP) problem and is NP-hard.
In contrast, the optimization problem in (15) is in the convex
hull of all possible yty′

t ’s in R
n×n (Li et al. 2009), which

is a continuous region and makes the problem easier to be
solved. Actually, by considering each (Q ◦ yty′

t ) as a base
kernel, the optimization problem in (15) shares a similar form
with the MKL problem, which can be solved by optimizing
a convex optimization problem in its primal problem (Kloft
et al. 2011).

The main challenge for applying the existing MKL tech-
niques to solve (15) is that we have too many base kernels,
i.e., T = |Y| is possibly exponential to the number of posi-
tive instances n+. Inspired by Infinite Kernel Learning (IKL)
(Gehler and Nowozin 2008), we employ the cutting-plane
algorithm to solve it. Specifically, by introducing a dual vari-
able τ for the constraint d′1 = 1 inD, we arrive at the duality
of (15) as follows (see the detailed derivations in Appendix
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Algorithm 2 Approximately find the most violated yt
1: Initialize yi = 1 for all instances in positive bags {(Bl , Yl )|L+

l=1}.
2: repeat
3: for each positive bag Bl do
4: Fix the labeling of all the other positive bags, find the optimal

instance labels for Bl that maximizes (17) by enumerating all
the feasible instance labels for Bl .

5: end for
6: until no labels are changed.

Algorithm 3 The optimization algorithm for solving the
objective function of our MIL-CPB-PI

Input: Training data {(Bl , Yl )|Ll=1} (see Sect. 3.1).
1: Initialize C = {y0} with y0 = [1′

n+ ,−1′
n−n+]′, and set r = 0.

2: repeat
3: Set r ← r + 1.
4: Based on Y = C, solve for (d,α,β) by optimizing the MKL

problem in (15) (See Appendix 2 for the detailed solution).
5: Set C ← C ⋃

yr where yr is obtained by solving (17).
6: until The objective of (15) converges.
Output: The learnt classifier f (x).

1),

max
τ,(α,β)∈S

1′α − 1

2γ
(α̂ + β − C11)′K̃(α̂ + β − C11) − τ,

s.t.
1

2
α′ (Q ◦ yty′

t

)
α ≤ τ, ∀t = 1, . . . , T . (16)

As each of the constraints in (16) corresponds to a base ker-
nel Q ◦ yty′

t , there are many constraints (i.e., T = |Y|) in
the above problem. The main idea of the cutting-plane algo-
rithm is to approximate (16) by using only a few constraints.
Specifically,we start fromone constraint, and solve for (α,β)

and τ . If there is any constraint that cannot be satisfied, we
add this constraint into the current optimization problem, and
resolve for (α,β) and τ again. The above process is repeated
until all constraints are satisfied.

To find the violated constraint, we maximize the left-hand
side of the constraint in (16), which can bewritten as follows,

max
y∈Y

y′(Q ◦ αα′)y, (17)

The above optimization problem approximately by enumer-
ating the instance labels in a bag-by-bag fashion when the
size of each bag is not too large, as discussed in Algorithm 2.

The algorithmof ourMIL-CPB-PI is listed inAlgorithm3.
We first initialize the labeling set as C = {y0}. Then we
iteratively train an MKL classifier by solving (15) based on
Y = C and update the labeling set C by adding the violated
yr , which is obtained by solving (17) based on the current α.
This process is repeated until the objective of (15) converges.

As we only need to solve an MKL problem based on a
small set of base kernels at each iteration, the optimization
procedure is much more efficient. It can be solved similarly

as in the existing MKL solver in Kloft et al. (2011). We also
give the detailed optimization procedure in Appendix 2.

Moreover, the objective of (15) decreases monotonously
as r increases, because the labeling set is enlarged at each
iteration. The final classifier can be presented as f (x) =
w′φ(x) + b with w = ∑n

i=1 αi ỹiφ(xi ), where αi is the i-th
entry in the final dual variable α, and ỹi = ∑r

t=1 dt yt,i with
yt,i being the i-th entry of yt .

4 Domain Adaptive MIL-PI

The training web videos often have very different statistical
properties from the test videos, which is also known as the
dataset bias problem (Torralba andEfros 2011). To reduce the
domain distribution mismatch, we proposed a new domain
adaptation framework by re-weighting the source domain
samples when learning the classifiers. In the following, we
develop our domain adaptation framework, which is referred
to as MIL-PI-DA. Moreover, we also extend sMIL-PI (resp.,
mi-SVM-PI,MIL-CPB-PI) to sMIL-PI-DA (resp., mi-SVM-
PI-DA, MIL-CPB-PI-DA).

Our work is inspired by the Kernel Mean Matching
(KMM) method (Huang et al. 2007), in which the source
domain samples are reweighted byminimizing theMaximum
Mean Discrepancy (MMD) between two domains. However,
KMM is a two-stage method, in which they first learn the
weights for the source domain samples and then utilize the
learnt weights to train a weighted SVM. Though the recent
work (Chu et al. 2013) proposed to combine the primal for-
mulation of weighted-SVM and a regularizer based on the
MMD criterion, their objective function is non-convex, and
thus the global optimal solution cannot be guaranteed. To this
end, we propose a convex formulation by adding the regu-
larizer based on the MMD criterion to the dual formulation
of our MIL-PI framework, which leads to a convex objective
function as discussed in Sect. 4.1. Formally, let us denote
the target domain samples as {xti |nti=1}, and denote φ(xti ) as
the corresponding nonlinear feature. To distinguish the two
domains, we append a superscript s to the source domain
samples, i.e., {xsi |nsi=1} and denote φ(xsi ) as the correspond-
ing nonlinear feature.

4.1 Bag-Level Domain Adaptive MIL-PI

We propose a bag-level domain adaptive MIL-PI method
sMIL-PI-DA, which is extended from sMIL-PI. We denote
the objective in (8) as H(α,β) = −p′α + 1

2α
′(K ◦ yy′)α +

1
2γ (α̂+β−C11)′K̃(α̂+β−C11), and also denote theweights
for source domain samples as θ = [θ1, . . . , θm]′ with each
θi being the weight for the i-th source domain sample. We
also denote {zsi |mi=1} (resp., {zti |nti=1}) as the set of virtual sam-
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ples in the source (resp., target ) domain, which are used in
our sMIL-PI-DA. Note that zsi ’s and zti ’s denote the visual
features. Then, we formulate our sMIL-PI-DA method as
follows,

min
α,β,θ

H(α,β) + μ

2
‖ 1

m

m∑
i=1

θizsi − 1

nt

nt∑
i=1

zti‖2 (18)

s.t. α′y = 0, 1′(α̂ + β − C11) = 0, (19)

ᾱ ≤ 1, β ≥ 0 (20)

0 ≤ α ≤ C2θ , 1′θ = m, (21)

where C2 is a parameter and θi is the weight for zsi . The
last term in (18) is a regularizer based on the MMD crite-
rion, which aims to reduce the domain distribution mismatch
between two domains by reweighting the source domain
samples as in KMM, and the constraints in (19) and (20)
are from sMIL-PI. Note in (21), we use the box constraint
0 ≤ α ≤ C2θ to regularize the dual variable α, which is sim-
ilarly used in weighted SVM (Huang et al. 2007). In (21), the
second constraint 1′θ = m is used to enforce the expectation
of sample weights to be 1. The problem in (18) is jointly
convex with respect to α, β and θ , and thus we can obtain
the global optimum by optimizing a quadratic programming
problem.

Interestingly, the primal form of (18) is closely related to
the formulation of SVM+, as described below,

Proposition 1 The primal form of (18) is equivalent to the
following problem,

min
w,b,w̃,b̃,ŵ,b̂,η

J (w, b, w̃, b̃, η) + λ

2
‖ŵ − ρv‖2

+C2

m∑
i=1

ζ(zsi ), (22)

s.t. w′zsi + b ≥ pi − ξ(z̃si ) − ζ(zsi ),

∀i = 1, . . . , L+, (23)

w′zsi + b ≤ −1 + ηi + ζ(zsi ),

∀i = L+ + 1, . . . ,m, (24)

ξ(z̃si ) ≥ 0, ∀i = 1, . . . , L+, (25)

ηi ≥ 0, ∀i = L+ + 1, . . . ,m, (26)

ζ(zsi ) ≥ 0, ∀i = 1, . . . ,m, (27)

where J (w, b, w̃, b̃, η) = 1
2

(‖w‖2 + γ ‖w̃‖2) + C1
∑L+

j=1
ξ(z̃sj )+

∑m
j=L++1 η j is the objective function in (4), ζ(zsi ) =

ŵ′zsi + b̂, v = 1
m

∑m
i=1 z

s
i − 1

nt

∑nt
i=1 z

t
i , λ = (mC2)

2

μ
and

ρ = mC2
λ

.

The detailed proof is provided in Appendix 3.
Compared with the objective function in (4), we intro-

duce one more slack function ζ(zsi ) = ŵ′zsi + b̂, and also

regularize the weight vector of this slack function by using
the regularizer ‖ŵ − ρv‖2. Recall that the witness function
in MMD is defined as g(z) = 1

‖v‖v
′z (Gretton et al. 2012),

which can be deemed as the mean similarity between z and
the source domain samples (i.e., 1

m

∑m
i=1 z

s
i
′z) minus the

mean similarity between z and the target domain samples
(i.e., 1

nt

∑nt
i=1 z

t
i
′z). In other words, we conjecture that the

witness function outputs a lower value when the sample z is
closer to the target domain samples and vice versa. By using
the regularizer ‖ŵ−ρv‖2, we expect the new slack function
ζ(zsi ) = ŵ′zsi + b̂ shares the similar trend2 with the witness
function g(zsi ) = 1

‖v‖v
′zsi . As a result, the training error of

the training sample zsi (i.e., ξ(z̃si ) + ζ(zsi ) for the samples in
the positive bags or ηi + ζ(zsi ) for the negative samples) will
tend to be lower if it is closer to the target domain, which is
helpful for learning a more robust classifier to better predict
the target domain samples.

4.2 Instance-Level Domain Adaptive MIL-PI

Besides the bag-level MIL method sMIL, we can also
incorporate the instance-level MIL methods, mi-SVM and
MIL-CPB, into our MIL-PI-DA framework. We refer to our
new approaches as mi-SVM-PI-DA and MIL-CPB-PI-DA,
respectively.

4.2.1 mi-SVM-PI-DA

To derive the formulation ofmi-SVM-PI-DA,we firstlywrite
the duality of the mi-SVM-PI problem in (9) as follows,

min
y∈Y

max
α,β

J (α,β, y) .= 1′α − 1

2
α′(K ◦ yy′)α

− 1

2γ
(α̂ + β − C11)′K̃(α̂ + β − C11),

s.t. α′y = 0, 1′(α̂ + β − C11) = 0,

ᾱ ≤ 1, α ≥ 0, β ≥ 0. (28)

where α = [α̂′, ᾱ′]′ and β are the dual variables defined
similarly as in the duality of MIL-CPB-PI in (14).

Similarly as in sMIL-PI-DA, we also introduce the MMD
based regularizer to (28) in order to reduce the domaindistrib-
utionmismatch, which leads to our mi-SVM-PI-DA problem
as follows,

2 The bias term b̂ and the scalar terms ρ and 1
‖v‖ will not change the

trend of functions.
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Algorithm 4 The optimization algorithm for solving the
objective function of our mi-SVM-PI-DA

Input: Training data {(Bl , Yl )|Ll=1} (see Sect. 3.1).
1: Initialize y = [1′

n+ ,−1′
ns−n+]′.

2: repeat
3: Train f (x) = w′φ(x)+b by solving the subproblem in (30) based

on y.
4: Calculate the decision values of training instances by using the

learnt f (x).
5: Based on the decision values, obtain y that satisfies the constraints

in (1).
6: until The labeling vector y does not change.
Output: The learnt classifier f (x) = w′φ(x) + b.

min
y∈Y

max
α,β,θ

J (α,β, y) − μ

2
‖ 1

ns

ns∑
i=1

θiφ(xsi ) − 1

nt

nt∑
i=1

φ(xti )‖2

s.t. α′y = 0, 1′(α̂ + β − C11) = 0,

ᾱ ≤ 1, β ≥ 0,

0 ≤ α ≤ C2θ , 1′θ = ns, (29)

where ns is the number of source domain samples, nt is the
number of target domain samples. Similarly as in weighted
SVM, the box constraint 0 ≤ α ≤ C2θ is used, in which
each θi is the weight for the i-th source domain sample. Note
we minus the MMD based regularizer in (29), as the inner
optimization problem is a maximization problem.

Similarly as in mi-SVM-PI, we solve the optimization
problem in (29) in an iterative approach. When the label vec-
tor y is fixed, the subproblem can be written as,

min
α,β,θ

−J (α,β, y) + μ

2

(
1

n2s
θ ′Kθ − 2

nsnt
θ ′Kst1

)
s.t. α′y = 0, 1′(α̂ + β − C11) = 0,

ᾱ ≤ 1, β ≥ 0,

0 ≤ α ≤ C2θ , 1′θ = ns, (30)

whereKst ∈ R
ns×nt is the kernel matrix measuring the simi-

larity between the training samples and test samples by using
visual features.

We describe the algorithm for solving mi-SVM-PI-DA in
Algorithm4.Wefirst initialize the label vectory by setting the
labels of instances as their corresponding bag labels. Then
we iteratively solve the inner optimization problem based
on the current y, and infer y by using the learnt classifier
f (x) = w′φ(x) + b from the previous iteration. The inner
optimization problem can be solved by optimizing a convex
quadratic programming problem as in (30). For any posi-
tive bag Bl where the constraint in (1) is not satisfied, we
additionally set the labels of σ |Bl | instances with the largest
decision values in this positive bag to be positive. The above
process is repeated until y does not change.

Similarly as sMIL-PI-DA, the primal form of (29) is also
related to the formulation of SVM+, as described in Propo-
sition 2 below,

Proposition 2 The primal form of (29) is equivalent to the
following problem,

min
y,w,b,w̃,

b̃,ŵ,b̂,η

J (w, b, w̃, b̃, η) + λ

2
‖ŵ − ρv‖2

+C2

ns∑
i=1

ζ(φ(xsi )), (31)

s.t. yi (w′φ(xsi ) + b) ≥ 1 − ξ(φ̃(x̃si )) − ζ(φ(xsi )),

∀i = 1, . . . , n+, (32)

yi (w′φ(xsi ) + b) ≥ 1 − ηi − ζ(φ(xsi )),

∀i = n+ + 1, . . . , ns, (33)

ξ(φ̃(x̃si )) ≥ 0, ∀i = 1, . . . , n+, (34)

ηi ≥ 0, ∀i = n+ + 1, . . . , ns, (35)

ζ(φ(xsi )) ≥ 0, ∀i = 1, . . . , ns, (36)

where J (w, b, w̃, b̃, η) = 1
2

(‖w‖2 + γ ‖w̃‖2) + C1
∑n+

j=1

ξ(φ̃(x̃sj )) + ∑n
j=n++1 η j is the objective function in (9),

ζ(φ(xsi )) = ŵ′φ(xsi ) + b̂, v = 1
ns

∑ns
i=1 φ(xsi ) − 1

nt

∑nt
i=1

φ(xti ), λ = (nsC2)
2

μ
and ρ = nsC2

λ
.

We can similarly explain the regularizer λ
2‖ŵ− ρv‖2 and

ζ(φ(xsi )) as those for Proposition 1. It can also be similarly
proved and the details are ignored here.

4.2.2 MIL-CPB-PI-DA

Let us denote the objective of the duality of MIL-CPB-PI

in (15) as J (α,β,d) = 1′α − 1
2α

′
(∑T

t=1 dtQ ◦ yty′
t

)
α −

1
2γ (α̂ +β −C11)′K̃(α̂ +β −C11). Similarly, we can reduce
the domain distribution mismatch by using a MMD based
regularizer. We arrive at the objective function of our MIL-
CPB-PI-DA as follows,

min
d∈D

max
α,β,θ

J (α,β,d) − μ

2
(
1

n2s
θ ′Kθ − 2

nsnt
θ ′Kst1)

s.t. 1′(α̂ + β − C11) = 0,

ᾱ ≤ 1, β ≥ 0,

0 ≤ α ≤ C2θ , 1′θ = ns, (37)

which can be solved similarly as in Algorithm 3. The only
difference is that we have one more MMD regularizer in
the inner optimization problem. Therefore, forMIL-CPB-PI-
DA, we need solve for (d,α,β, θ) at Step 4 of Algorithm 3
by optimizing the MKL problem in (37) based on the current
Y . The final classifier can be presented as f (x) = w′φ(x)+b
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with w = ∑n
i=1 αi ỹiφ(xi ), where αi is the i-th entry in the

final dual variable α, and ỹi = ∑r
t=1 dt yt,i with yt,i being

the i-th entry of yt .
Similarly as sMIL-PI-DA, the primal form of (37) is also

related to the formulation of SVM+, as described below,

Proposition 3 The primal form of (37) is equivalent to the
following problem,

min
d∈D,wt ,b,w̃,

b̃,ŵ,b̂,η

P(d,wt |Tt=1, b, w̃, b̃, 
η) + λ

2
‖ŵ − ρv‖2

+C2

ns∑
i=1

ζ(φ(xsi )), (38)

s.t.
T∑
t=1

w′
tψt (xsi ) ≥ 1 − ξ(φ̃(x̃si )) − ζ(φ(xsi )),

∀i = 1, . . . , n+, (39)
T∑
t=1

w′
tψt (xsi ) ≥ 1 − ηi − ζ(φ(xsi )),

∀i = n+ + 1, . . . , ns, (40)

ξ(φ̃(x̃si )) ≥ 0, ∀i = 1, . . . , n+, (41)

ηi ≥ 0, ∀i = n+ + 1, . . . , ns, (42)

ζ(φ(xsi )) ≥ 0, ∀i = 1, . . . , ns, (43)

where P(d,wt |Tt=1, b, w̃, b̃, 
η) = 1
2

∑T
t=1

‖wt‖2
dt

+ γ
2 ‖w̃‖2 +

C1
∑n+

j=1 ξ(φ̃(x̃sj ))+
∑n

j=n++1 η j , ζ(φ(xsi )) = ŵ′φ(xsi )+b̂,

v = 1
ns

∑ns
i=1 φ(xsi ) − 1

nt

∑nt
i=1 φ(xti ), λ = (nsC2)

2

μ
and ρ =

nsC2
λ

, ψt (xsi ) is the nonlinear feature mapping of x
s
i induced

by the kernel Q ◦ yty′
t .

Again, the explanation for the regularizer λ
2‖ŵ − ρv‖2

and ζ(φ(xsi )) is similar as those for Proposition 1. We can
similarly prove Proposition 3 and the details are ignored here.

5 Experiments

In this paper, we evaluate our proposed methods for action
and event recognition by using loosely labelled web videos
as training data. However, it is worth mentioning that our
newly proposed methods can be readily used for other appli-
cations like image retrieval and image categorization. For
example, the effectiveness of our sMIL-PI and sMIL-PI-DA
methods for image retrieval and image categorization has
been demonstrated in our preliminary conference paper (Li
et al. 2014b).

5.1 Video Event Recognition

Datasets and Features:We evaluate our proposed methods
for video event recognition on the benchmark datasets Kodak
(Loui et al. 2007) and CCV (Jiang et al. 2011).

We construct a new training dataset called “Flickr”, which
contains the web videos crawled from Flickr by using six
event names (i.e., “birthday”, “picnic”, “parade”, “show”,
“sports” and “wedding”) as the queries. We remove the web
videos if they are too short (i.e., the file size is smaller than
5M) or too long (i.e., the file size is larger than 100M). Finally
we keep the top 300 web videos for each query as the rele-
vant videos. For each query, we randomly sample the same
number of Flickr videos that do not contain this query as one
of the surrounding textual descriptions as irrelevant videos.

The Kodak dataset was used in Duan et al. (2012d) and
(2012b), which contains 195 consumer videos from six event
classes (i.e., “birthday”, “picnic”, “parade”, “show”, “sports”
and “wedding”). The CCV dataset (Jiang et al. 2011) col-
lected by Columbia University was also used in Duan et al.
(2012b). It consists of a training set of 4659 videos and a test
set of 4658 videos from 20 semantic categories. Following
(Duan et al. 2012b), we only use the videos from the event
related categories and we also merge “wedding ceremony”,
“wedding reception” “wedding dance” as “wedding”, “non-
music performance”, “music performance” as “show”, and
“baseball”, “basketball”, “biking”, “ice skating”, “skiing”,
“soccer”, “swimming” as “sports”. Finally, there are 2440
videos from five event classes (i.e., “birthday”, “parade”,
“show”, “sports”, and “wedding”). Since different datasets
have different numbers of event classes, we use the 6 (resp.,
5) overlapped event classes between Flickr and Kodak (resp.,
CCV) for performance evaluation.

We extract both textual features and improved dense tra-
jectory features (Wang and Schmid 2013) from the training
web videos. The textual features are used as privileged infor-
mation.

– Textual feature: A 2000-dim term-frequency (TF) fea-
ture is extracted for each video by using the top-2000
wordswith the highest frequency as the vocabulary. Stop-
word removal is performed to remove the meaningless
words.

– Visual feature: We extract improved dense trajectory
features using the source code provided in Wang and
Schmid (2013). Specifically, three types of space-time
(ST) features (i.e., 96-dim Histogram of Oriented Gra-
dient, 108-dim Histogram of Optical Flow and 192-dim
Motion Boundary Histogram) are used, in which we set
the trajectory length as 50, the sampling stride as 16,
and all the other parameters as their default values. We
construct the codebook by using k-means clustering on
the ST features from all videos in the training dataset to
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generate 2000 clusters, and then use the bag-of-words
model for each type of ST features. Finally, each video is
represented as a 6000-dim feature by concatenating the
2000-dim TF feature from each type of ST feature.

As the test data does not contain textual information, we only
extract improved dense trajectory features for the videos in
the test set, and each test video is also represented as a 6000-
dim feature.

5.1.1 Experimental Results Without Domain Adaptation

Baselines: We firstly compare our methods under the MIL-
PI framework with two sets of baselines: the recent LUPI
methods including pSVM+ (Vapnik and Vashist 2009) and
Rank Transfer (RT) (Sharmanska et al. 2013), as well as
the conventional MIL method sMIL (Bunescu and Mooney
2007). We also include SVM as a baseline, which is trained
by using the visual features only.Moreover, we also compare
our MIL methods with Classeme (Torresani et al. 2010) and
multi-view learning methods Kernel Canonical Correlation
Analysis (KCCA) and SVM-2K, because they can also be
used for our application.

– KCCA (Hardoon et al. 2004): We apply KCCA on the
training set by using the textual features and visual fea-
tures, and then train the SVM classifier by using the
common representations of visual features. In the testing
process, the visual features of test videos are transformed
into their common representations for the prediction.

– SVM-2K (Farquhar et al. 2005): We train the SVM-2K
classifiers by using the visual features and textual features
from the training samples, and apply the visual feature
based classifier on the test samples for the prediction.

– Classeme (Torresani et al. 2010): For each word in the
2000-dim textual features, we retrieve relevant and irrel-
evant videos to construct positive bags and negative bags,
respectively. Then we follow (Li et al. 2013) to use mi-
SVM to train the classeme classifier for each word. For
each training video and test video, 2000 decision values
are obtained by using 2000 learnt classeme classifiers
and the decision values are augmented with the visual
features. Finally, we train the SVM classifiers for classi-
fying the test videos based on the augmented features.

We also compare our MIL methods with MIML (Zhou and
Zhang 2006). While we can treat the top 2000 words in the
textual descriptions as noisy class labels, MIML cannot be
directly applied to our task because the 2000 words may be
different from the concept names. Thus, we use the decision
values from the MIML classifiers as the features, similarly
as in Classeme. Moreover, we additionally compare ourMIL

Table 1 MAPs (%) of different
methods without using domain
adaptation on the Kodak and
CCV datasets

Method Test set

Kodak CCV

SVM 42.84 47.16

pSVM+ 44.54 48.04

RT 36.22 34.16

Classeme 43.84 46.89

MIML 42.94 47.75

MILBoost 32.77 36.63

KCCA 44.46 47.91

SVM-2K 43.69 47.78

sMIL 42.94 47.90

sMIL-PI 46.07 49.13

mi-SVM 44.23 47.68

mi-SVM-PI 45.89 49.32

MIL-CPB 44.81 47.87

MIL-CPB-PI 46.19 49.21

The results in boldface are from
our methods

methods with theMILBoost method proposed in Leung et al.
(2011) which was used for video classification.
Experimental Settings:We train the classifiers by using the
videos crawled from Flickr and evaluate the performances of
different methods on the Kodak and CCV datasets, respec-
tively. Similarly as in Li et al. (2011), we uniformly partition
the 300 relevant videos crawled from Flickr into positive
bags, and also randomly partition the 300 irrelevant videos
into negative bags. We obtain 60 positive bags and 60 nega-
tive bags by respectively using relevant videos and irrelevant
videos, in which each training bag contains five instances.
The positive ratio is set as σ = 0.6, as suggested in Li et al.
(2011). In our experiments, we useGaussian kernel for visual
features and linear kernel for textual features for our meth-
ods and the baselinemethods except RankTransfer (RT). The
objective function of RT is solved in the primal form, so we
can only use linear kernel instead of Gaussian kernel for
visual features.

For performance evaluation, we report the Mean Average
Precision (MAP) based on all test videos. For ourmethod, we
empirically fix C1 = 102, γ = 102 (resp., C1 = 10−2, γ =
10) for sMIL-PI (resp., mi-SVM-PI, MIL-CPB-PI). For the
baseline methods, we choose the optimal parameters based
on their MAPs on the test dataset.
Experimental Results: The MAPs of all methods are
reported in Table 1. By additionally exploiting textual infor-
mation, pSVM+, Classme, MIML, KCCA, and SVM-2K
are generally better than SVM. The RTmethod is worse than
SVM due to the use of linear kernel for visual features. The
MILBoost method is also much worse than SVM, although
we have carefully tuned the parameters. It is worth men-
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tioning that pSVM+ achieves better results than Classme,
MIML, RT, MILBoost and the multi-view methods (i.e.,
SVM-2K and KCCA) on both datasets, which demonstrates
it is helpful to use textual features as privileged information.

Our MIL-PI methods generally achieve similar results.
MIL-CPB-PI is the best when using Kodak as the test set.
While mi-SVM-PI outperforms sMIL-PI and MIL-CPB-PI
when using CCV as the test set, MIL-CPB-PI also achieves
comparable results as mi-SVM-PI.

Our MIL-PI methods (i.e., sMIL-PI, mi-SVM-PI, MIL-
CPB-PI) are better than pSVM+, RT, MIML, Classeme, and
two existing multi-view learning methods, which demon-
strates that it is beneficial to further cope with label noise
of web videos as in our MIL-PI framework. Moreover, each
of our MIL-PI methods also outperforms its corresponding
conventionalMILmethod (i.e., sMIL-PI vs. sMIL,mi-SVM-
PI vs. mi-SVM, MIL-CPB-PI vs. MIL-CPB), which again
demonstrates it is beneficial to exploit the additional textual
features from web data as privileged information.

5.1.2 Experimental Results with Domain Adaptation

Baselines: We compare our methods sMIL-PI-DA, mi-
SVM-PI-DA, and MIL-CPB-PI-DA in our MIL-PI-DA
framework with the existing domain adaptation methods
GFK (Gong et al. 2012), SGF (Gopalan et al. 2011), SA (Fer-
nando et al. 2013), TCA (Pan et al. 2011), KMM (Huang
et al. 2007), DIP (Baktashmotlagh et al. 2013), DASVM
(Bruzzone andMarconcini 2010) and STM (Chu et al. 2013).
We notice that the feature-based domain adaptation methods
such as GFK, SGF, SA, TCA, DIP can be combined with
the SVM classifier or our MIL-PI classifiers (i.e., sMIL-PI,
mi-SVM-PI, and MIL-CPB-PI), so we report two results for
each domain adaptation baseline method by using the SVM
classifier and the best classifier from our MIL-PI framework.
Experiment Settings: We use the same setting as in
Sect. 5.1.1. In ourMIL-PI-DA framework, we have twomore
parameters (i.e., C2 and λ) when compared with the MIL-PI

framework. Recall that λ = (C2m)2

μ
, where m is the number

of source training samples and μ is the parameter used in
the dual form of our MIL-PI-DA framework. We empirically
fix C2 = 10 (resp., C2 = 10−5), λ = 102 for sMIL-PI-DA
(resp., mi-SVM-PI-DA, MIL-CPB-PI-DA). For the baseline
methods, we choose the optimal parameters based on their
best MAPs on the test dataset.
Experimental Results: The MAPs of all methods are
reported in Table 2.

When using the SVM classifier, some existing feature-
based domain adaptation methods (SA, DIP, and SGF on
Kodak as well as DIP and GFK on CCV) are worse when
compared with SVM. One possible explanation is that those
two-step methods may not well preserve the discriminability

Table 2 MAPs (%) of SVM, sMIL-PI, mi-SVM-PI, MIL-CPB-PI and
different domain adaptation methods on the Kodak and CCV datasets

Method Test set

Kodak CCV

SVM 42.84 47.16

sMIL-PI 46.07 49.13

sMIL-PI-DA 47.55 50.32

mi-SVM-PI 45.89 49.32

mi-SVM-PI-DA 47.59 50.75

MIL-CPB-PI 46.19 49.21

MIL-CPB-PI-DA 49.16 50.66

DASVM 45.86 47.67

STM 44.93 49.00

SA 40.30 (41.34) 47.21 (49.47)

TCA 44.24 (45.92) 48.91 (49.10)

DIP 41.56 (45.69) 44.49 (46.28)

KMM 43.94 (46.29) 48.97 (49.03)

GFK 44.19 (45.79) 45.93 (48.84)

SGF 41.19 (46.41) 47.71 (48.69)

For SA, TCA, DIP, GFK and SGF, the first number is obtained by using
the SVM classifier and the second number in the parenthesis is the best
result obtained by using one of our MIL-PI methods. For KMM, the
first number is obtained by using the SVM classifier and the second
result in the parenthesis is obtained by using our sMIL-PI method. The
results in boldface are from our domain adaptation methods

of features when reducing the domain distribution mismatch
in thefirst step. For these feature-based baselines, their results
after using our MIL-PI framework are better when com-
paredwith those using the SVMclassifier,which again shows
the effectiveness of our MIL-PI framework for video event
recognition by coping with label noise and simultaneously
taking advantage of the additional textual features as privi-
leged information. However, the results of the feature-based
baselines after using our MIL-PI framework are still worse
than our MIL-PI-DA methods. The experimental results
clearly demonstrate our domain adaptation approaches are
more effective than those two-step feature-based baseline
methods.

Our framework is more related to KMM and STM. We
also report two results for KMM because KMM can be com-
bined with SVM or our sMIL-PI method. Particularly, the
instance weights are learnt in the first step by using KMM
and then we use the learnt instance weights to reweight the
loss function of SVM or sMIL-PI in the second step. We
observe that our sMIL-PI-DA method is better than STM
and KMM when using the SVM or sMIL-PI classifier. One
possible explanation is our sMIL-PI-DAmethod can achieve
the global optimal solution by solving a convex optimization
problem in one step while KMM is a two-step approach and
STM can only achieve the local optimum.
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We also observe that each of our methods under the
domain adaptation framework MIL-PI-DA outperforms its
corresponding version under the MIL-PI framework (i.e.,
sMIL-PI-DA vs. sMIL-PI, mi-SVM-PI-DA vs. mi-SVM-PI,
MIL-CPB-PI-DA vs. MIL-CPB-PI), which shows it is help-
ful to reduce the domain distribution mismatch by using the
MMDbased regularizer.Moreover, ourMIL-PI-DAmethods
also outperform all the existing domain adaptation baselines,
which demonstrates the effectiveness of our MIL-PI-DA
framework.

Finally, our newly proposed instance-level MIL-PI-DA
methods (i.e., mi-SVM-PI-DA and MIL-CPB-PI-DA) achi-
eve better results than the bag-level MIL-PI-DA method
sMIL-PI-DA on both test sets, which shows it is useful to
infer the instance labels in the positive bags on both datasets.

5.2 Human Action Recognition

Experimental Settings: In this section, we evaluate our
MIL-PI andMIL-PI-DA framework for human action recog-
nition on the benchmark dataset HMDB51 (Kuehne et al.
2011).

We collect a new training dataset for human action recog-
nition by crawling short videos and their surrounding textual
descriptions from YouTube website using 51 action names
from the HMDB51 dataset as the queries. We use the top
200 web videos for each query as the relevant videos and
randomly sample the same number of web videos that do
not contain the query as one of the surrounding texts as the
irrelevant videos. Then, for each action class, we construct
40 training bags, in which the size of each training bag is
5. The HMDB51 dataset contains 6766 clips from 51 action
classes. As suggested in Kuehne et al. (2011), we use three
testing splits as the test set, in which each split contains 30
videos for each action class.

For the YouTube dataset, we extract both the textual
features and the visual features for each video. For the tex-
tual features, we extract the same 2000-dim term frequency
(TF) features from the surrounding textual descriptions as
in Sect. 5.1. For the visual features, we follow Wang and
Schmid (2013) by utilizing Fisher vector encoding, which
has shown excellent performance for human action recog-
nition. Specifically, we adopt the improved dense trajectory
features and extract four types of descriptors (i.e., 30-dim
trajectory, 96-dim Histogram of Oriented Gradient, 108-dim
Histogram of Optical Flow, and 192-dim Motion Boundary
Histogram). Then, we generate the Fisher vector features by
using 256 Gaussian Mixture Models (GMMs) for each type
of descriptors, and then use PCA to reduce the dimension of
the concatenated Fisher vector to 10000. As the HMDB51
dataset does not contain textual descriptions, we only extract
the visual features for each video in the HMDB51 dataset.

Table 3 The accuracies (%) of different methods on the HMDB51
dataset without considering the domain distribution mismatch

Method Accuracy

SVM 50.94

pSVM+ 52.64

RT 51.42

Classeme 51.63

MIML 51.76

KCCA 51.24

SVM-2K 51.91

sMIL 51.96

sMIL-PI 53.62

mi-SVM 52.11

mi-SVM-PI 53.22

MIL-CPB 53.62

MIL-CPB-PI 55.38

The results in boldface are from our methods

As suggested in Kuehne et al. (2011), we evaluate the
baseline methods and our methods on 3 testing splits, and
report the mean accuracy over 3 splits for performance eval-
uation. For our MIL-PI methods and MIL-PI-DA methods,
we use the same parameters as in Sect. 5.1. For the baseline
methods, we choose the optimal parameters based on their
mean accuracies on the test dataset. The other experimental
settings are the same as in Sect. 5.1.
Experimental Results: The accuracies of all methods are
reported in Tables 3 and 4. From Table 3, we observe that
multi-instance learning methods sMIL, mi-SVM and MIL-
CPB outperform SVM, which indicates the effectiveness
of multi-instance learning methods for coping with label
noise. By additionally taking advantage of textual informa-
tion, pSVM+, RT, Classme, MIML, KCCA, and SVM-2K
are better than SVM, and each of ourMIL-PI methods is also
better than its corresponding conventional MIL method (i.e.,
sMIL-PI vs. sMIL, mi-SVM-PI vs. mi-SVM, or MIL-CPB-
PI vs. MIL-CPB).

From Table 3, we also observe that our MIL-PI methods
(i.e., sMIL-PI, mi-SVM-PI, MIL-CPB-PI) are better than the
baseline methods (i.e., pSVM+, RT, MIML, Classeme, and
multi-view learning methods), which can additionally utilize
the textual features. A possible explanation is that we addi-
tionally cope with label noise of web videos by utilizing the
multi-instance learning techniques.

From Table 4, we observe that the existing domain
adaptation methods DASVM, SA, DIP, KMM, GFK, and
SGF are better than SVM by utilizing the unlabelled target
domain samples to reduce the domain distribution mis-
match. It is interesting that STM and TCA are worse than
SVM, although we have carefully tuned their parameters.
We also observe that our sMIL-PI-DA (resp., mi-SVM-
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Table 4 The accuracies (%) of SVM, our MIL-PI methods, and dif-
ferent domain adaptation methods on the HMDB51 dataset. For SA,
TCA, DIP, GFK and SGF, the first number is obtained by using the
SVM classifier and the second number in the parenthesis is the best
result obtained by using one of our MIL-PI methods. For KMM, the
first number is obtained by using the SVM classifier and the second
result in the parenthesis is obtained by using our sMIL-PI method.

Method Accuracy

SVM 50.94

sMIL-PI 53.62

sMIL-PI-DA 55.45

mi-SVM-PI 53.22

mi-SVM-PI-DA 57.65

MIL-CPB-PI 55.38

MIL-CPB-PI-DA 57.31

DASVM 51.98

STM 37.43

SA 53.16 (55.58)

TCA 43.12 (46.95)

DIP 51.20 (55.73)

KMM 53.51 (53.77)

GFK 52.90 (54.27)

SGF 51.31 (52.77)

The results in boldface are from our methods

PI-DA, MIL-CPB-PI-DA) outperforms sMIL-PI (resp., mi-
SVM-PI, MIL-CPB-PI), which shows it is beneficial to
reduce the domain distribution mismatch by using our
domain adaptation approach. Moreover, our MIL-PI-DA
methods also outperform all the existing domain adaptation
baselines.

In order to further evaluate our domain adaptation
approaches, we combine the feature-based domain adapta-
tion methods (i.e., SA, TCA, DIP, GFK, and SGF) with our
MIL-PI methods (sMIL-PI, mi-SVM-PI, and MIL-CPB-PI)
and combine KMM with our sMIL-PI method, similarly as
discussed in Sect. 5.1. For each feature-based domain adap-
tation method, we report the best result obtained by using
one of our three MIL-PI methods. The feature-based domain
adaptation methods after using the best classifier learnt from
one of our threeMIL-PImethods (i.e., sMIL-PI,mi-SVM-PI,
or MIL-CPB-PI) and KMM after using our sMIL-PI classi-
fier achieve better results, because our MIL-PI methods can
help handle label noise and simultaneously utilize privileged
information.

Our instance-level methods mi-SVM-PI-DA and MIL-
CPB-PI-DAoutperform the feature-based domain adaptation
methods combined with our MIL-PI methods. For SA and
DIP, the results in the parenthesis are slightly better than our
sMIL-PI-DA (see Table 4). However, SA and DIP are both
combined with our MIL-CPB-PI method. When SA and DIP
are combined with our sMIL-PI method, the result of SA

Table 5 MAPs (%) of our MIL-PI methods when using partial privi-
leged information (PI) and full PI

Method Partial PI Full PI

Kodak CCV Kodak CCV

sMIL-PI 46.07 49.13 45.58 48.55

mi-SVM-PI 45.89 49.32 45.41 48.38

MIL-CPB-PI 46.19 49.21 45.51 48.04
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Fig. 2 MAPs of sMIL-PI-DA on the CCVdataset when using different
trade-off parameter γ
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Fig. 3 MAPs of sMIL-PI-DA on the CCVdataset when using different
trade-off parameter C1

and DIP are 54.01% and 53.94%, respectively, which are
still worse than our sMIL-PI-DA method.

5.3 How to Utilize Privileged Information

As discussed in Sect. 3, in our MIL-PI framework, we use
privileged information for relevant videos (i.e., positive bags)
only, because privileged information (i.e., textual features)
maynot be always reliable. Toverify it,we evaluateSVM+by
utilizing privileged information for all training samples. The
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Fig. 4 MAPs of sMIL-PI-DA on the CCVdataset when using different
trade-off parameter C2, where we empirically fix C2

λ
= 104

MAPs of SVM+ are 44.08 and 47.49% when using Kodak
and CCV as the test sets, respectively, which are worse than
pSVM+ on those two datasets (44.54 and 48.04% reported
in Table 1).

Similarly, we also evaluate our MIL-PI methods under
two settings (i.e., full privileged information (PI) and par-
tial privileged information (PI)). We report the results of our
MIL-PI methods under two settings on the Kodak and CCV
datasets in Table 5.We observe that theMAPs of ourMIL-PI
methods under the full PI setting are lower than their corre-
sponding results under the partial PI setting on both datasets.
These results verify our conjecture that privileged informa-
tion of irrelevant web videos may not be helpful for learning
robust classifiers, because the labels of irrelevant videos are
generally correct while the textual features are not always
reliable.

Since our MIL-PI methods with partial PI achieve better
results than those with full PI, we further conjecture it may
be useful to additionally learn the importance of privileged
information of training samples during the training process.
However, it is a non-trivial task under our setting where the
labels of training samples are noisy. So we leave how to
learn the importance of privileged information as our future
work.

5.4 Robustness to the Parameters

Ourmethods are relatively robust when the trade-off parame-
ters are set in certain ranges. Here, we study the performance
variation of our sMIL-PI-DA method with respect to one
parameter while fixing other parameters as their default val-
ues. Let us take the CCV dataset as an example, the MAPs of
sMIL-PI-DA are in the range of [50.32%, 50.66%] (resp.,
[50.15%, 51.10%]) when we set γ ∈ [10−3, 103] (resp.,
C1 ∈ [101, 105]), as shown in Fig 2 (resp., Fig 3). For the
parameters C2 and λ, we observe our methods are relatively
robust when C2

λ
is empirically fixed as 104. The MAPs of

sMIL-PI-DA are in the range of [49.52%, 50.32%] when
we setC2 ∈ [101, 105], as shown in Fig 4. We also have sim-
ilar observations for our other methods and on other datasets.
We will study how to decide the optimal parameters in our
future work.

5.5 Comparison of Training Time

In this section, we take sMIL-PI and sMIL-PI-DA as two
examples to compare the training time with the correspond-
ing MIL method sMIL as well as other baselines. As shown
in (8), our sMIL-PI method can be formulated as a quadratic
programming (QP) problem with respect to two variables
{α,β}. Compared with sMIL, which can be formulated as a
QP problem with respect to one variable α only, the size
of the QP problem in (8) is larger. However, it can still
be efficiently solved with the existing QP solvers. Specifi-
cally, we take the CCV dataset as an example to compare
the training time of sMIL-PI with other baseline methods.
From Table 6, we observe that the training time of sMIL-
PI is only slightly longer than sMIL, and our sMIL-PI
method is much more efficient than other baseline meth-
ods.

Similarly, our sMIL-PI-DA method can also be solved
as a QP problem w.r.t. three variables {α,β, θ}. So it can
also be efficiently solved by using the existing QP solvers.
In Table 7, we take the CCV dataset as an example to com-
pare the training time of sMIL-PI-DAwith existing methods.
We observe that our sMIL-PI-DA method is faster than
other baseline methods except KMM. A possible expla-

Table 6 Training time of our sMIL-PI method and the baseline methods without domain adaptation on the CCV dataset

Method SVM pSVM+ RT Classeme MIML KCCA SVM-2K sMIL sMIL-PI

Time(s) 22.17 35.21 1501.51 1618.15 8785.27 88.13 96.98 18.31 21.86

Table 7 Training time of our sMIL-PI-DA method and the existing domain adaptation methods on the CCV dataset

Method DASVM STM SA TCA DIP KMM GFK SGF sMIL-PI-DA

Time(s) 1130.05 204.74 615.79 972.95 1089.95 111.23 1932.82 3592.87 151.71
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nation is that KMM solves a smaller scale QP problem
w.r.t. θ before training an SVM classifier in the second
step.

6 Conclusion and Future Work

In this paper, we have proposed new MIL approaches
for action and event recognition by learning from loosely
labelled web data. We firstly propose a new MIL-PI frame-
work together with three instantiations sMIL-PI,mi-SVM-PI
and MIL-CPB-PI, in which we not only take advantage of
the additional textual features in the training web videos but
also effectively cope with noise in the loose labels of relevant
training web videos. We further propose a new MIL-PI-DA
framework and three instantiations sMIL-PI-DA, mi-SVM-
PI-DA and MIL-CPB-PI-DA, which can additionally reduce
the data distribution mismatch between the training and test
videos. By using freely available web videos as training
data, our approaches are inherently not limited by any prede-
fined lexicon. Extensive experiments clearly demonstrate our
proposed approaches are effective for action and event recog-
nition. In future work, we will study how to automatically
decide the optimal trade-off parameters for our methods. We
will also investigate how to learn the importance of privileged
information.
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Appendix 1: Detailed Derivations for (16)

We provide the complete derivations for (16). For ease of
presentation, we define

F(α̂,β) = 1

2γ
(α̂ + β − C11)′K̃(α̂ + β − C11).

Then, the problem in (15) can be rewritten as,

min
d

max
(α,β)∈S

1′α − 1

2
α′

(
T∑
t=1

dtQ ◦ yty′
t

)
α − F(α̂,β)

s.t.
T∑
t=1

dt = 1, dt ≥ 0, ∀t = 1, . . . , T (44)

Let us introduce a dual variable τ for the constraint∑T
t=1 dt = 1 and another dual variable νt for each con-

straint dt ≥ 0 in problem (44), we arrive at its Lagrangian as
follows,

L = 1′α − 1

2
α′

(
T∑
t=1

dtQ ◦ yty′
t

)
α − F(α̂,β)

+ τ

(
T∑
t=1

dt − 1

)
−

T∑
t=1

νt dt . (45)

The derivative of the Lagrangian w.r.t. dt can be written as,

∂L
∂dt

= −1

2
α′ (Q ◦ yty′

t

)
α + τ − νt , ∀t = 1, . . . , T .

Let us set ∂L
∂dt

= 0 and consider νt ≥ 0, we have

1

2
α′ (Q ◦ yty′

t

)
α ≤ τ, ∀t = 1, . . . , T .

By substituting ∂L
∂dt

= 0 into the Lagrangian, we obtain the
duality of (44) as follows,

max
τ

max
(α,β)∈S

1′α − F(α̂,β) − τ

s.t.
1

2
α′ (Q ◦ yty′

t

)
α ≤ τ, ∀t = 1, . . . , T, (46)

which is the same as (16). We complete the derivations here.

Appendix 2: Solution to the MKL Problem at Step
4 of Algorithm 3

At Step 4 of Algorithm 3, we solve an MKL problem in (15)
by settingY = C. As C contains only a small number of label
vectors, so the number of base kernels is not large. Now we
give the algorithm for solving theMKL problem in (15) with
a few kernels.

Let us denote T̃ = |C| as the number of label vectors in
C. We also define d = [d1, . . . , dT̃ ]′ as the vector of ker-
nel coefficients, and D = {d′1 = 1,d ≥ 0}. Note we use
the same symbols d and D as in (15) for simplicity, but the
dimensionality of d (i.e., T̃ = |C|) is much smaller than that
in (15) (i.e., T = |Y|). Now, we write the primal form of (15)
as follows,

min
d∈D

w̃,b̃,wt ,η

1

2

T̃∑
t=1

‖wt‖2
dt

+ γ

2
‖w̃‖2

+C1

n+∑
i=1

ξ(φ̃(x̃i )) +
n∑

i=n++1

ηi , (47)

s.t.
T̃∑
t=1

w′
tψt (xi ) ≥ 1 − ξ(φ̃(x̃i )),

ξ(φ̃(x̃i )) ≥ 0, i = 1, . . . , n+,
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T̃∑
t=1

w′
tψt (xi ) ≥ 1 − ηi ,

ηi ≥ 0, i = n+ + 1, . . . , n, (48)

where ψt (xi ) is the nonlinear feature of xi induced by the
kernel Q ◦ yty′

t , and wt = dt
∑n

i=1 αi yti φ(xi ) with yti being
the i-the entry in yt .

The above problem is a convex problem w.r.t. w̃, b̃,wt , η,
and d, so we can achieve the global optimum by alternatively
optimizing two set of variables {w̃, b̃,wt , η}, and d.

Fix d: When d is fixed, we solve for {w̃, b̃,wt , η} by opti-
mizing the dual problem in (15), i.e.,

max
(α,β)∈S

1′α − 1

2
α′

⎛
⎝ T̃∑

t=1

dtQ ◦ yty′
t

⎞
⎠ α

− 1

2γ
(α̂ + β − C11)′K̃(α̂ + β − C11), (49)

which is a quadratic programming problem w.r.t. (α,β), and
can be solved by using any QP solver.

Fix {w̃, b̃,wt , η}: The optimization problem w.r.t. d can
be written as,

min
d

1

2

T̃∑
t=1

‖wt‖2
dt

s.t. d′1 = 1, d ≥ 0, (50)

which is the same as solving the kernel coefficients in �p-
normMKL (Kloft et al. 2011) when p = 1, and has a closed-
form solution as below,

dt = ‖wt‖∑T̃
t=1 ‖wt‖

, (51)

where ‖wt‖ can be calculated from ‖wt‖2 = d2t α
′(Q ◦

yty′
t )α. We repeat above two steps until the objective value

of (49) converges.

Appendix 3: Proof of Proposition 1

Proof By introducing the dual variables α̂ = [α1, . . . , αL+]′
∈ R

L+
for the constraints in (23), ᾱ = [αL++1, . . . , αm]′ ∈

R
m−L+

for the constraints (24), β̂ = [β1, . . . , βL+]′ ∈ R
L+

for the constraints in (25), β̄ = [βL++1, . . . , βm]′ ∈ R
m−L+

for the constraints in (26), and ν = [ν1, . . . , νm]′ for the
constraints in (27), we arrive at its Lagrangian as follows:

L = 1

2

(
‖w‖2 + γ ‖w̃‖2

)
+ C1

L+∑
i=1

(w̃′z̃si + b̃)

+
m∑

i=L++1

ηi + λ

2
‖ŵ − ρv‖2 + C2

m∑
i=1

(ŵ′zsi + b̂)

−
L+∑
i=1

α̂i (w′zsi + b − pi + w̃′z̃si + b̃ + ŵ′zsi + b̂)

−
m∑

i=L++1

ᾱi (−w′zsi − b − 1 + ηi + ŵ′zsi + b̂)

−
L+∑
i=1

β̂i (w̃′z̃si + b̃) −
m∑

i=L++1

β̄iηi −
m∑
i=1

νi (ŵ′zsi + b̂),

(52)

Let us define α = [α̂′, ᾱ′]′, β = [β̂ ′, β̄ ′]′, Z = [zs1, . . . , zsm],
Z̃ = [z̃s1, . . . , z̃sL+], and y = [1′

L+ ,−1′
m−L+]′, then the

derivatives of the Lagrangian w.r.t. w, b, w̃, b̃, ŵ, b̂, η can
be obtained as follows:

∂L
∂w

= w − Z(α ◦ y),

∂L
∂b

= −α′y,

∂L
∂w̃

= γ w̃ − Z̃(α̂ + β̂ − C11L+),

∂L
∂ b̃

= −1′
L+(α̂ + β̂ − C11L+),

∂L
∂ŵ

= λŵ − λρv − Z(α + ν − C21m),

∂L
∂ b̂

= −1′
m(α + ν − C21),

∂L
∂η

= 1m−L+ − ᾱ − β̄.

By setting those derivatives to zeros, we have the following
equations:

w = Z(α ◦ y), (53)

w̃ = 1

γ
Z̃(α̂ + β̂ − C11L+), (54)

ŵ = ρv + 1

λ
Z(α + ν − C21m), (55)

as well as the following constraints, α′y = 0, 1′
L+(α̂ + β̂ −

C11L+) = 0, 1′
m(α+ν−C21m) = 0, ᾱ ≤ 1m−L+ . Substitut-

ing the equations (53), (54) and (55) into (52) and considering
α,β, ν ≥ 0, we obtain the following dual form,

min
α,β,ν

−p′α + 1

2
α′(K ◦ yy′)α

+ 1

2γ
(α̂ + β̂ − C11)′K̃(α̂ + β̂ − C11)

+ 1

2λ
(α + ν − C21m)′K(α + ν − C21m)
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+ρv′Z(α + ν − C21m) (56)

s.t. α′y = 0, 1′
L+(α̂ + β̂ − C11L+) = 0,

ᾱ ≤ 1m−L+ ,

1′
m(α + ν − C21m) = 0, α,β, ν ≥ 0, (57)

Let us define θ = 1
C2

(α + ν), then the constraint 1′
m(α +

ν − C21m) = 0 becomes 1′
mθ = m, and the constraint

ν ≥ 0 becomes α ≤ C2θ . Let us define the feasible set
for (α,β, ν) as A = {α′y = 0, 1′

L+(α̂ + β̂ − C11L+) =
0, ᾱ ≤ 1m−L+ , 1′

mθ = m,α ≤ C2θ ,α,β, θ ≥ 0}. Substi-
tuting θ = 1

C2
(α + ν) into (56), we arrive at,

min
(α,β,θ)∈A

−p′α + 1

2
α′(K ◦ yy′)α

+ 1

2γ
(α̂ + β̂ − C11)′K̃(α̂ + β̂ − C11)

+ (C2)
2

2λ
(θ − 1m)′K(θ − 1m) + ρC2v′Z(θ − 1m) (58)

Recall in the main text we have defined H(α,β) = −p′α +
1
2α

′(K ◦ yy′)α + 1
2γ (α̂ + β̂ − C11)′K̃(α̂ + β̂ − C11), then

we simplify the objective function in (58) as follows,

min
(α,β,θ)∈A

H(α,β) + (C2)
2

2λ
(θ − 1m)′K(θ − 1m)

+ρC2v′Z(θ − 1m) (59)

Now, we derive the objective function as follows,

min
(α,β,θ)∈A

H(α,β) + (C2)
2

2λ
(θ − 1m)′K(θ − 1m)

+ρC2v′Z(θ − 1m) (60)

⇔ min
(α,β,θ)∈A

H(α,β) + (C2)
2

2λ
(θ ′Kθ − 21′

mKθ)

+ρC2v′Zθ (61)

⇔ min
(α,β,θ)∈A

H(α,β) + (C2)
2

2λ
θ ′Kθ − (C2)

2

λ
1′
mKθ

+ρC2

m
1′
mKθ − ρC2

nt
1′
ntKtsθ (62)

where in (61) we omit the constant terms, and in (62) we
use the equation that v′Z = 1

m 1
′
mK − 1

nt
1′
ntKts with Kts ∈

R
nt×m being the kernel matrix between the target domain

samples and the source domain samples. Let us define λ =
(C2m)2

μ
and ρ = C2m

λ
= μ

C2m
and omit the constant term, then

the problem in (62) becomes

min
(α,β,θ)∈A

H(α,β) + μ

2m2 θ ′Kθ − μ

mnt
1′
ntKtsθ

⇔ min
(α,β,θ)∈A

H(α,β) + μ

2m2 θ ′Kθ − μ

mnt
1′
ntKtsθ

+ μ

2n2t
1′
ntKt1nt (63)

⇔ min
(α,β,θ)∈A

H(α,β) + μ

2
‖ 1

m

m∑
i=1

θizsi − 1

nt

nt∑
i=1

zti‖2,

(64)

where in (63) we add a constant μ

2n2t
1′
ntKt1nt to the objective

function with Kt ∈ R
nt×nt being the kernel matrix on the

target domain samples. Note the problem in (64) is exactly
the problem in (18). We complete the proof here. �
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