
## Professor Chew Sing Yian (CCEB, LKC, MSE) NTU

Our lab work focuses on:

- Designing bio-mimicking scaffolds to induce RNA interference capability.
- Scaffold-mediated delivery of small non-coding RNAs - siRNA and microRNAs.
- Target cells: CNS cells, stem cells, primary cells
- In vitro and in vivo gene silencing aiming to promote neural regeneration.
  3D



| RNA interference appr                                             |
|-------------------------------------------------------------------|
| ① host-implant integr<br>(Col1A1 siRNA; miR-124;                  |
| û neuronal differentia<br>(REST siRNA)                            |
| <sup>Î</sup> oligodendrocyte different<br>maturation (miR-219 + m |
| ① Axon local protein sy<br>(miR-222, miR-431, miR                 |

## Tools

- 1. Electrospun scaffolds Cas-9)
- 2. Neural cell membran DNA Nano gel
- 3. Red Blood cell-derive Extracellular Vesicles miRs)
- 4. Injectable hydrogel(A
- 5. 3D Printed scaffolds

## Previous work

| roach                                     | Potential treatments                                                                                                     |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| ration<br>Let-7c)                         | Scaffold implantation<br>(Acta Biomat. 2013, 2018; Adv Health Mat, 2019)                                                 |
| ation                                     | Controlled stem cell differentiation<br>(Biomaterials 2013, Biomat. Sci. 2018,<br>Macro Bio 2015, )                      |
| tiation & niR-338)                        | <b>Remyelination</b><br>(Biomaterials 2015, J. Controlled Release 2015,<br>Acta Biomat. 2018, Mol Therapy 2019)          |
| nthesis<br>R-132)                         | Enhance axon intrinsic growth<br>ability<br>(Adv. Sci 2019, 2021, Biomat Sci 2020)                                       |
| Ongoi                                     | ng work                                                                                                                  |
| s (CRISPR<br>ne-coated<br>ed<br>s (myelin | complex<br>2. Cell-specific uptake<br>3. Easy to obtain and non-<br>immunogenic<br>4. Localized and targeted<br>delivery |