

School of Computer Science and Engineering **College of Engineering**

Deep Learning for Detection of **Depression**

by Combining Audio and Visual Images

Student: Wong Xiaoqing Supervisor: Professor Jagath Chandana Rajapakse

Motivation

Depression is a common mental disorder that affects approximately 280 million people worldwide. It could cause great suffering and impair one's ability to function daily at work, or even lead to suicide. However, in most cases, symptoms can be improved with early intervention from healthcare professionals. Therefore, it is critical that patients receive the necessary diagnosis and treatments.

Objective

This project aims to develop deep learning models to **classify levels of depression**. The main focus is to combine information from audio and video features of clinical interviews to predict depression ratings of the patient – None, Mild, Moderate, Moderately Severe and Severe. Transformer based architectures and attention mechanisms are used to identify interactions between different features from audio and video and perform fusion of the multimodal features.

Deep Learning Models

Unimodal Classification

Multimodal

Comparison

Multimodal Transformer Architecture			
Output		ŷ ▲	
Prediction		Dense	
Self-attention	Transformer	Transformer	Transformer
Concatenation	$Z_{\rm L} \in \mathbb{R}^{T_{\rm L} \times 2d}$	$Z_{V} \in \mathbb{R}^{T_{V} \times 2d}$	$Z_A \in \mathbb{R}^{T_A \times 2d}$
Crossmodal Attention	Crossmodal Transformer $(V \rightarrow L)$ Crossmodal Transformer $(A \rightarrow L)$	$ \begin{array}{c} Crossmodal \\ Transformer \\ (L \rightarrow V) \end{array} \begin{array}{c} Crossmodal \\ Transformer \\ (A \rightarrow V) \end{array} $	Crossmodal Transformer $(V \rightarrow A)$ Crossmodal Transformer $(L \rightarrow A)$
Positional Embedding		\bigcirc	
Temporal Convolution	Conv1D	Conv1D	Conv1D
Input Sequences	$X_{\rm L} \in \mathbb{R}^{T_L \times d_L}$	$X_{\mathrm{V}} \in \mathbb{R}^{T_{\mathrm{V}} \times d_{\mathrm{V}}}$	$X_A \in \mathbb{R}^{T_A \times d_A}$

Multimodal Transformer Results

Mod	el Hyperparameters	
Batch Siz	32	
Number of E	30	
Layers of Crossmodal Tr	5	
Layers of Multi-head A	5	
	Model Results	
Class	F1 Score	Accuracy
None	0.840079	89.1304%
Mild	0.441915	58.6304%
Moderate	0.687168	78.2608%
Moderately Severe	0.840079	89.1304%
Severe	0.778005	84.7826%

Conclusion

From experiment results, the multimodal transformer can learn from multimodal data and perform better than audio and visual unimodal classifiers, while text classifier outperforms it due to limitations.