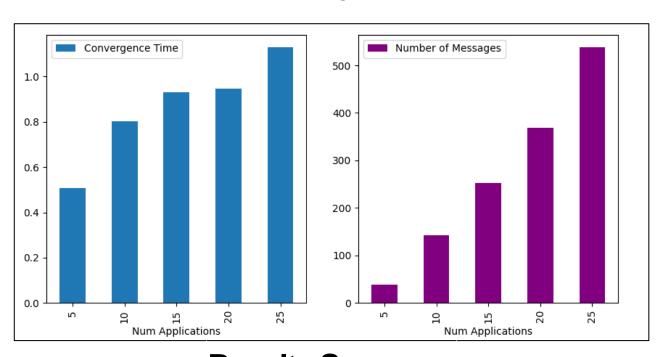
Simulating Distributed Consensus Algorithms among Applications using CloudSim Plus Software

Student: Muhamad Fazirul Bin Hanafe Supervisor: A/P Arvind Easwaran

Project Objectives:

The use of distributed consensus algorithm is a common strategy to offload tasks in an edge computing architecture. However, there is a lack of implementation support for such algorithms in the cloud simulators available. Hence, this project aims to extend the widely used open-source cloud simulation platform, CloudSim Plus, to include such support.

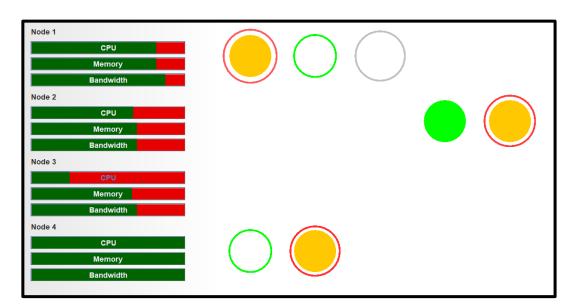

Testing with DRAGON:

Distributed Resource Assignment OrchestratioN (DRAGON) is one of the many distributed consensus algorithms. The algorithm was implemented in this project and multiple simulation runs were made.

A Single Simulation Run

Two performance metrics were collected, namely average convergence time and total number of messages exchanged. This can then be used as a benchmark when implementing your own algorithms. Paired-t confidence intervals is one statistical method for comparing the performance between two algorithms.

Results Summary


Paired-t Confidence Interval Method:

 X_{ir} represents performance metric from system i for the r^{th} simulation run SYSTEM 1: X_{11} , X_{12} , X_{13} ... X_{1r} SYSTEM 2: X_{21} , X_{22} , X_{23} ... X_{2r} We get Z_r where $Z_r = X_{1r} - X_{2r}$

$$\overline{Z}(n) = \frac{1}{n} \sum_{r=1}^{n} Z_r, \qquad S_z^2(n) = \frac{1}{(n-1)} \sum_{r=1}^{n} [Z_r - \overline{Z}(n)]^2$$

Confidence Interval = $\overline{Z}(n) \pm t_{n-1,1-\alpha/2} \frac{S_Z(n)}{\sqrt{n}}$

Real-Time Visualisation of the Distributed Process:

The extension also includes a feature where users are able to view, in real-time, the arrival of different applications and its behavior within the system.