
www.ntu.edu.sg/scse

Neural Network Compression Techniques for 
Out-Of-Distribution Detection 
SCSE 21-0449 
Student: Bansal Aditya Supervisor: Assoc. Prof. Arvind Easwaran

One of the key challenges in deployingMLmodels on embedded systems are

the numerous resource constraints, for instance, memory footprint, response

time, and power consumption. Such real-time systems require resource-

efficient models with low inference time while maintaining reasonable

accuracy. In the context of OOD detection, despite the detection model having

a high classification accuracy, if the inference time is too high, the system

might be rendered ineffectual.

By implementing the above techniques on a real-time embedded system of

DuckieBot, we studied the performance of these methods, particularly for the

task of OOD detection. The compression techniques of pruning, quantization,

and knowledge distillation have been experimented with, and analyzed on

numerousmetrics, for execution time,memory usage, reconstruction loss, and

OODmetrics like ROC curve, True Positive, and False Positive Rates.

Project Overview

OOD Detection Pipeline

Pruning Quantization
• Neural network compression by pruning the network

weights is one the most popular techniques, which is
commonly used to reduce the number of parameters in
a pre-trained network

• The fundamental idea is to remove the redundant and
inconsequential parameters from a neural network

Knowledge Distillation

• The compression technique of quantization has proved
to be successful in both training as well neural network
inference, in research and industrial settings

• Broadly quantization can be categorized into three different
algorithms, namely dynamic quantization, post-training static
quantization, and quantization aware training.

• Knowledge Distillation aims to compress neural networks by
‘distilling’ the knowledge from a larger complex model or an
ensemble of models to a simpler and smaller model, with
minimal loss in accuracy

• Knowledge distillation is typically performed on complex
neural network architectures which might potentially be
overparameterized.

1. Training the 𝜷-VAE Model : The VAE model is first trained on the in-distribution
data gathered in different lighting conditions

2. Get encoder-only model : The weights of the decoder part are discarded, and
the encoder-only model is used for the OOD detection

3. Calibrate Model : The encoded latent variables are ranked based on their
amount of variance for the corresponding partition

4. Run the OOD Detector : The OOD detector is then run on the test set using the
encoder-only bVAE model and the calibration file

5. Optimize the decay term : The resulting files from the OOD detection are then
used to calibrate the decay term of the OOD detector

6. Get Evaluation Metrics : Finally, the evaluation metrics for accuracy, execution
time, memory footprint, and OOD performance are recorded


