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Background:

The term “Deepfake” comes from “fake” images or videos generated by “deep” learning
algorithms. In December 2017, a user named “Deepfakes” posted a video of a fake face of
Hollywood actress Gal Gadot on Reddit, the world’s fourth-most-visited Internet community. It
caused a stir and marked the beginning of the rise of face-forging technology. “Deepfake” was
also used as a synonym for this type of technology.

Project Objectives:

This project aims to reimplement the baseline Deepfake detection method (Xception) and an
existing advanced forged face detection technology (REConstruction-Classification [Earning
framework (RECCE)). Additionally, the goal also includes comparing and analyzing the
strengths and limitations of different methods on different datasets.
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