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▪ Fuzzification done for interpretability and as a classification 
problem is easier than a regression problem

▪ Fuzzification through clustering was based on Kernel Density 
Estimation

▪ Interpretation based off Hebbian 
theory, which explains synaptic 
plasticity of neurons.

▪ This is replicated by a layer mapping 
fuzzy inputs and outputs through a 
Mamdani Rule Base

▪ The strength of a neuron (rule) is 
based off how recently it was fired 
and the number of times it had 
been fired before

▪ Transformer based 
model

▪ Hyperparameter 
tuning done with 
Genetic Algorithm, 
and MCES to reduce 
input dimension

▪ Maximum R2: 99.7% 
▪ Minimum R2: 92.7%

▪ Use of predicted prices to generate idealised indicators for the stocks

▪ Perform portfolio optimization with deep reinforcement learning 
(A2C, PPO), with idealised indicators forming the state.

▪ A2C returned 124% over the test data, PPO returned 107%, versus 
the average portfolio of 104%.
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Objective: Create a pipeline for portfolio optimisation with a predictive model that is interpretable and accurate
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