

School of Computer Science and Engineering College of Engineering

Fuzzy-Embedded Deep Learning Network(FE-TNN)

for Interpretable Stock Market Prediction

Motivation

The opaque nature of traditional deep learning models often deters their use by financial market analysts. Fuzzy Embedded TimesNet Neural Network model(FE-TNN)is designed to integrate the:

- 1. Precision of a neural network model, and
- 2. Explainability of a fuzzy-based rule generation system

With the predicted result, we also aim to explore the predictions' applications in stock trading and portfolio management using reinforcement learning(RL).

Architecture

- 5-Layer: Input, fuzzification, inference, defuzzification, output
- Inference layer have TimesNet model and fuzzy rule base, sharing save input/output
- Triggered fuzzy rules can elucidate the TimesNet model

Multi-model Approach

Use one model to predict one timestep, 14 models for prediction T+1 to T+14

Experiment Procedure

- Choose stock portfolios, gather features (X) and targets (y) from the stocks.
- 2. Train univariate clustering model on each feature & target to create fuzzy vocabulary.
- 3. Train TimesNet using the fuzzy vocabulary.
- 4. Generate fuzzy rules with inputs and outputs of the TimesNet.
- 5. Incorporate the neuro-fuzzy system into a RL multi-stock trading system and evaluate its performance against buy-and-hold.

Application: RL Trading

- Environment: uses historical stock data and simulates market conditions through OpenAl Gymnasium and Stablebaseline3
- States: comprised of basic stock data and technical indicators
- Agent: employs an ensemble of RL algorithms (A2C, DDPG, PPO)

RL Trading Results

	DJI_PORT	p-DJI_PORT	f-DJI_PORT
Annual return	-0.063480418	0.066580516	0.020494382
Cumulative returns	-0.243260043	0.315143054	0.090046758
Annual volatility	0.162108629	0.1562709	0.149079387
Sharpe ratio	-0.323324569	0.490701146	0.210748242
Calmar ratio	-0.14950914	0.310455636	0.099672623
Stability	0.787444672	0.695971507	0.294896876
Max drawdown	-0.424592223	-0.214460646	-0.205616963
Omega ratio	0.932152228	1.104719912	1.043551568
Sortino ratio	-0.436605324	0.743609847	0.301566842
Tail ratio	0.87406738	1.047963049	1.043874013
Daily value at risk	-0.020631758	-0.019383988	-0.018657562