
www.scse.ntu.edu.sg

Pre-Fuzzing Analysis of Embedded System
binaries with Ghidra SRE
Student: Ron Ng Jian Ying
Supervisor: Professor Liu Yang

MOTIVATION

Detour/Hooking instrumentation can be used
instead. Suitable portions of instructions in
code can be identified as relocatable.

This allows instructions to be copied into
a memory segment with instrumentation
code added. Original instruction flow remains
undisturbed.

SOLUTION
Ghidra was used to analyse binaries and its API used to create a Python script that retrieves a list of
compatible address locations for hooking. These are known as gadgets.

The gadget list is then passed on to BSFuzz which is a coverage-guided embedded fuzzer developed
by NTU CSL. BSFuzz uses the list of gadget addresses to know which function to hook at runtime.

BSFuzz

0x0000: 0F EC 2F 8E
0x0004: 9C A1 93 36
0x0008: 47 2D A5 95
0x000C: 53 6D 93 40
0x0010: B2 C0 57 D6
0x0014: BF 66 23 8D
0x0018: FA FD 97 67
0x001C: D2 93 71 2D
0x0020: D2 24 68 42

gadgets.inc

0x0004
0x000C
0x0010
0x001C

0x0000: 0F EC 2F 8E
0x0004: 9C A1 93 36
0x0008: 47 2D A5 95
0x000C: 53 6D 93 40
0x0010: B2 C0 57 D6
0x0014: BF 66 23 8D
0x0018: FA FD 97 67
0x001C: D2 93 71 2D
0x0020: D2 24 68 42

PROBLEM
Only two solutions currently exist in the market
for coverage guided fuzzing of embedded
systems – inline instrumentation which
requires source codes or fuzzing within a
virtual machine a la QEMU.

Fuzzing in a virtual machine is slow and
inline instrumentation without source code is
complex and inefficient.

