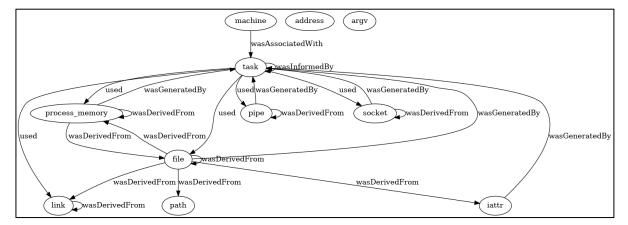
Provenance Graph Generation

For Intrusion Detection

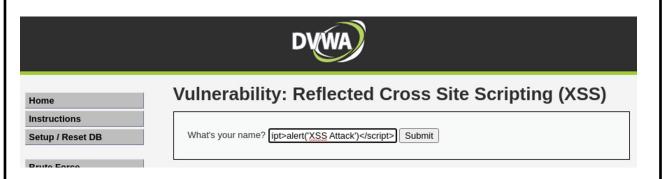
Student: Chew Jie Ying Perlyn Supervisor: Associate Professor Ke Yiping, Kelly


Project Objectives

With the increase in complexity of cyberattacks, traditional intrusion detection systems are struggling to identify sophisticated threats such as zero-day attacks or Advanced Persistent Threats (APTs). Provenance graphs emerge as a promising data source for modern intrusion detection by capturing comprehensive information on both malicious and benign system activities. These graphs present complex dependencies and relationships in the form of a directed acyclic graph that has potential for analysis using machine learning methods.

Recognising the potential of provenance graphs, this research implements Flurry, an end-to-end Framework built upon CamFlow, to improve the generation and capture of provenance graphs for intrusion detection. Intrusion scenarios will be designed then simulated on multiple security- sensitive applications across various operating systems. Extensive datasets of provenance graphs were produced via dynamically executing various attacks on Fedora and Ubuntu, then used to train and validate state-of-the-art graph-based models, to evaluate their effectiveness and accuracy. Specifically, a Graph Convolution Network (GCN) was implemented to perform graph classifications on provenance graphs.

Provenance Graphs


Provenance is generally defined as a "record that describes how entities, activities, and agents have influenced a piece of data". Specifically, in the context of intrusion detection, Provenance describes the history or lineage of an object that explicitly represents the dependency relationship between the damaged files and the intrusion processes, rather than the underlying system calls, to detect and analyse intrusions

Provenance Graph from the execution of a Brute Force Attack

Methodology

Generation of Graphs through Dynamic Execution of Attacks via DWVA

Hyperparameter Tuning of GCN model

		Size of Hidden Dimension		
		128 Nodes	256 Nodes	
	1 Layer	accuracy: 0.655	accuracy: 0.66	
Number of Layers		precision: 0.524	precision: 0.581	
		recall: 0.743	recall: 0.718	
		F1 macro: 0.651	F1 macro: 0.659	
	2 Layer	accuracy: 0.67	accuracy: 0.69	
		precision: 0.562	precision: 0.590	
		recall: 0.747	recall: 0.765	
		F1 macro: 0.668	F1 macro: 0.688	
	3 Layer	accuracy: 0.685	accuracy: 0.695	
		precision: 0.590	precision: 0.619	
		recall: 0.756	recall: 0.756	
		F1 macro: 0.684	F1 macro: 0.694	

Results and Conclusion

Statistics of Graph Datasets Generated

	Scenario Type	Number of Nodes	Number of Edges	Number of Relation Types	Accuracy	
Brute-Force	Benign	2110	5289	20	99.75	
	Attack	4006	11032	21		
CI Inication	Benign	3164	8195	20	84.63	
CL-Injection	Attack	1196	2775	20		
SQL-Injection	Benign	1257	3103	19	54.75	
SQL-Injection	Attack	1031	2294	18		
XSS-DOM	Benign	196	462	18	72.83	
ASS-DOM	Attack	1295	2995	20		
XSS-Reflected	Benign	4610	13828	19	78.58	
ASS-Reflected	Attack	3643	9640	21		
XSS-Stored	Benign	2811	7120	22	98.75	
ASS-Stored	Attack	8847	23433	23		

Results of a 3-layer GCN with Hidden Dimension 256

	Accuracy	Precision	Recall	F1	False Alarm Rate
Brute-Force	99.75 ± 0.25	99.49 ± 0.50	100.0 ± 0.00	99.75 ± 0.25	0.49 ± 0.50
CL-Injection	84.63 ± 2.30	83.01 ± 4.25	85.81 ± 7.95	84.17 ± 1.65	15.88 ± 2.68
SQL-Injection	54.75 ± 1.75	62.72 ± 15.78	53.63 ± 0.62	57.20 ± 6.68	42.99 ± 3.73
XSS-DOM	72.83 ± 1.38	71.24 ± 4.12	74.25 ± 2.96	72.60 ± 0.70	27.98 ± 4.52
XSS-Reflected	78.58 ± 1.63	79.73 ± 0.21	77.81 ± 3.35	78.65 ± 1.63	20.58 ± 0.36
XSS-Stored	98.75 ± 0.87	98.47 ± 1.82	99.00 ± 0.07	98.73 ± 0.94	1.45 ±1.61

The effectiveness of GCN can be seen in performing graph classification on provenance graphs datasets. The strong performance of state-of-the-art graph models in anomaly detection exemplifies the potential of provenance graphs as an ideal data source for modern intrusion detection systems.