

School of Computer Science and Engineering College of Engineering

Image-based Cataract Diagnosis

Using a Handheld Slit-lamp Device

Student: Fung Kai Xiang Daniel Supervisor: Prof Miao Chun Yan Advisor: Dr Wang Di

INTRODUCTION

Cataracts, the clouding of the eye's lens, poses a global health challenge as a **leading cause of visual impairment**. Improved cataract screening is needed as traditional diagnosis methods are limited in access, involving expensive equipment and expertise.

Provide accurate and trusted cataract diagnosis by:

- Mitigating the poorer quality of the images (slit lamp images C & D compared to fundus images A & B)
- Training the model with small, imbalanced dataset using image augmentation
- Explaining the model's prediction using Grad-CAM saliency mapping

(C) Slit-lamp healthy (D) Slit-lamp c

RESULTS						
Model	Accuracy	F1 Score	Sensitivity	Specificity		
Image-only	0.740 ± 0.058	0.795 ± 0.041	0.960 ± 0.036	0.520 ± 0.122		
Image+metadata	0.845 ± 0.048	0.863 ± 0.040	0.950 ± 0.056	0.740 ± 0.103		
Image-only (augmented)	0.925 ± 0.042	0.928 ± 0.040	0.940 ± 0.050	0.910 ± 0.072		
Image+metadata (augmented)	0.960 ± 0.039	0.959 ± 0.041	0.960 ± 0.046	0.960 ± 0.036		

Dataset: Images from handheld slit lamp camera collected from local hospitals.

Model validation: Performance

Image type Train Test Total

Best model was achieved with combining patient metadata and image augmentation:

- Large improvement from combining patient metadata like visual acuity and contrast sensitivity measurements
- Further **improvement in accuracy from image augmentation**, notably in specificity metric
- Best model accuracy of 0.960 is competitive with other studies' accuracy of 0.982^[1] and 0.966^[2]; performance gap explained by relatively much lower quality of slit lamp images and smaller original dataset size
- [1] Hasan, M. K., Tanha, T., Amin, M. R., Faruk, O., Khan, M. M., Aljahdali, S., & Masud, M. (2021). Cataract Disease Detection by Using Transfer Learning-Based Intelligent Methods. *Computational and Mathematical Methods in Medicine*.
- [2] Askarian, B., Ho, P., & Chong, J. W. (2021). Detecting Cataract Using Smartphones. *IEEE Journal of Translational Engineering in Health and Medicine, 9*, 1-10.

metrics obtained from 20-fold cross validation. Train-test split shown to the right

mage type	mann	1001	IVIGI
Healthy	14	5	19
Cataract	163	5	168

- Conv 1 & 2 focus on fine details while Conv 3 highlights the general region used for diagnosis → recommended to use Conv 3 for explaining diagnosis
- Overall, model focuses on features in the eye and near the illumination

CONCLUSION

- Transfer learning and combining patient data with eye images of CNNs is effective for cataract diagnosis, even with small dataset and noisy samples.
- Saliency maps complement the model's prediction and further validate the predictions of the model.

https://www.ntu.edu.sg/scse