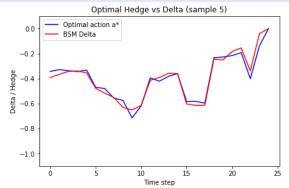


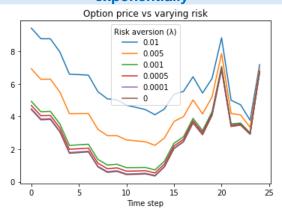
College of Computing and Data Science

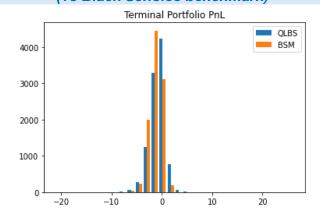

Option Pricing and Hedging with market friction using Reinforcement Learning

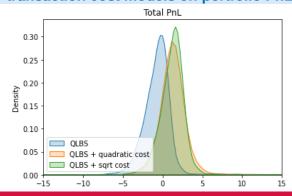
Student: Jiang Zixing Supervisor: Professor Bo An

Project Objective

Derive optimal risk-adjusted option price and hedge using the Q-Learning in Reinforcement Learning (QLBS) model with consideration for real-world market friction such as the trader's risk aversion, transaction costs and market impact costs


Hedging replication


Pricing replication


Risk aversion increases option premium exponentially

QLBS Portfolio PnL outperformance (vs Black Scholes benchmark)

Effect of different market impact and transaction cost models on portfolio PnL

Model performance

Model	Returns	Volatility	Sharpe
QLBS (raw)	-0.75	1.72	-0.44
+ Quadratic cost	1.40	2.86	0.49
+ Sart cost	1.23	1.71	0.72