Polymer Recycling and Sustainable Polymeric Materials

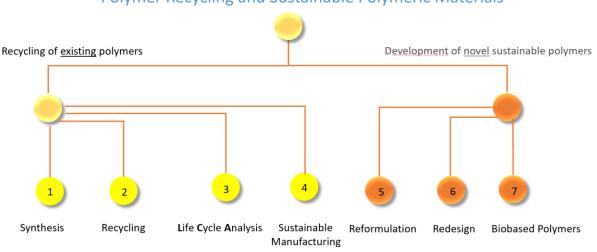
Rationale

The topic of polymer recycling and sustainable materials has rapidly evolved and has become extremely relevant for (PhD and Meng) students of the School of Materials Science and Engineering. In the first halve of the course we will look at existing materials and how to recycle them. After a recapitulation of the synthesis and composition of some of the main materials, we will cover primary recycling (within the materials manufacturing site), secondary recycling/mechanical recycling, tertiary/chemical recycling to polymer building blocks or other valuable materials. Also quaternary recycling (energy recovery or compostable materials) will be covered. Central at polymer recycling stands collecting and sorting. We will briefly touch upon issues with materials winding up in the environment.

In the second halve we will cover in detail the scientific field of materials science and the methods required for the development of novel sustainable materials. Some aspects of sustainable manufacturing of materials will be shown (eq emulsion polymerization). An introduction to life cycle analysis (LCA) of materials will be given. Then we cover reformulation of materials; for example towards mono-materials and reduction of certain additives (for example colorants). Redesigning polymer materials on a molecular level to make them more easily recyclable through for example the thermoplastic elastomer approach or by introducing dynamic crosslinks (vitrimers) will be extensively covered. Introduction of weak bonds to be able to break down high molecular weight polymers into reactive oligomers is a new and exciting area which will also be covered. Briefly we will touch upon alternative (biobased) building blocks for materials as well as biobased materials replacement. We will review relevant scientific literature on the subject related to several crucial scientific fields and the individual fields of interest of the students with practical cases and lively discussions. The students will write an essay where the main elements of the course will be applied to a topic of their individual choice in the area of sustainable materials.

(A) <u>Course "Polymer Recycling and Sustainable Polymeric Materials"</u>

Course Type	Course Code and Title	Pre- requisite	Date of Offer	Total No. of Hours		AU		
				Lecture	Tutorial	Lab	Total	
Elective	MS7460	NA	AY2023/24	17	9	-	26	2
			Semester 2					


Course Type	Course Code and Title	Pre- requisite	Date of Offer	Total No. of Hours			AU	
				Lecture	Tutorial	Lab	Total	
	Total hours	per semester		17 9 <u>26</u>		2		

Justifications:

We will review relevant scientific literature on the subject related to several crucial scientific fields and the individual fields of interest of the students with practical cases and lively discussions.

The course will consist of a series of (prerecorded) lectures with special emphasis on the scientific research related to sustainable materials. Besides the lectures, live video sessions will be offered with discussions on the points of interest to the students and their individual fields of study.

Further details on course (e.g. course aims, intended learning outcomes, course content, assessment, etc) are provided in <u>Annex A</u>.

Polymer Recycling and Sustainable Polymeric Materials

Annex A

1. COURSE CONTENT

Academic Year	AY2023/24	Semester	2
Course Coordinator	Professor Al	ex van Herk	
Course Code	MS7460		
Course Title	Polymer Rec	ycling and Su	ustainable Polymeric Materials
Pre-requisites	NA		
No of AUs	2		
Contact Hours	26 (17 lectur	re hours and	9 tutorial hours)
Suggested Class Size	not really lin	nited. Howev	ered as asynchronous learning, the class size is ver the group size in the tutorials should be no er run (can be offered multiple times)

Course Aims

1 This course is trying to achieve full awareness of the sustainability aspects of materials. This includes looking at existing materials and their ways of recycling as well as redesigning materials on formulation and molecular level.

2 The course should be taken by PhD and MEng in Materials Science and Engineering and MSc in Materials Science and Engineering that have a vested interest in sustainability of polymer materials.

3 Any professional in materials will be looking at sustainability aspects of materials, being it facilitating recycling or replacement by more sustainable alternatives. So for a future career in materials (being it in research or industry) this course is very useful.

tended Learning Outcomes (ILO)	
the end of this course, you should be able to:	
explain the important aspects of the polymerization mechanisms of materials	
classify the main materials according to key materials properties and polymerizatio formation	n mechanism
dentify the main environmental issues with polymer waste	
dentify the most important aspects of polymer waste collection and sorting	
explain the main aspects and current industrial applications of the four polymer rec explain the main aspects of life cycle analysis	cycling routes
give examples of aspects of sustainable manufacturing of materials	
to apply aspects of reformulation of materials to make then more sustainable	
to apply aspects of redesigning materials on a molecular level to make them more s to explain the main biobased building blocks and biobased replacements of mater	
critically read and interpret scientific literature in the area of sustainable polymeri	ic materials
write an essay in your specific area of interest with respect to sustainable polymer	ric materials
ourse Content	
aterials classification	
y materials properties	
ep-growth polymerization	
ain-growth polymerization	
lymerization techniques	
vironmental issues	
llecting and sorting of materials	
imary recycling	
condary/mechanical recycling with deterioration of properties and remedies	
rtiary/chemical recycling	
uaternary recycling (energy recovery and/or compostable materials)	
e Cycle Analysis	
pects of sustainable manufacturing of materials (eg emulsion polymerization) formulation of materials for increased sustainability	

uous and summative assessment)
ials
n sustainable materials
tic elastomers), reversible crosslinks (vitrimers)
;;
r level
r

Note: It is advised that Group component and class participation should not be more than 40% and 20% respectively, unless with good justification.

Component	ILO	Weighting	Team/Individual	Assessment
	Tested			Rubrics
1. Quizzes (6)	1-10	60%	Individual	Appendix 1
2. Continuous Assessment and class participation during live sessions (6)	1-11	20%	Individual	Appendix 2
3.Essay	12	20%	Individual	Appendix 3
Total		100%		

Formative feedback

Feedback is an important aspect to this course. You will receive both written feedback on the answers you gave in the quizzes and verbal feedback from me about your performance during the live sessions. Your final essays will be graded and extensive feedback on both scientific content and application of the elements of the course will be given.

Learning and Teaching Approach

Approach	How does this approach support you in achieving the learning outcomes?
Lecture (prerecorded)	The lecture materials are accompanied by self-practice questions, not only help to build the fundamental technical knowledge required for this course, but also help to develop your individual learning abilities and attitudes toward active learning. You may attempt the self-practice questions anytime, anywhere, and you can revisit the self-practice questions as many times as you want.
Live (video) sessions)	These sessions will allow you to ask specific questions and for the teacher to assess you understanding of the course materials. We will discuss scientific literature in the area of sustainable materials.
Essay writing	This will allow the technical knowledge acquired in this course to be applied to a topic of specific interest to the student and apply design principles from the course. Feedback will be given on the written essay in a small Teams meeting.

Reading and References

Introductory reading:

For basics in polymer chemistry (ILO 1,2): for example *Introduction to Polymers* By Robert J. Young, Peter A. Lovell, chapters 1-4 **or** M. P. Stevens, *Polymer Chemistry, An Introduction*, chapters 1-4.

0 Straights Times Nov 2, 2019 Biodegradable disposables can harm environment too
1 Nature 2021 Vol 590, p423, Closed-loop recycling of polyethylene-like materials, S. Mecking et al.
2 Nature Reviews 2022 2:46, Sustainable Polymers, Amar K. Mohanty et al.

Further reading and some of the papers to be discussed in the live sessions (number in bold):

3 Science 2021, Vol. 373, No. 6550 *Plastics In The Earth System*., A. Stubbings Et Al.

4 Macromol. Rapid Commun. 2021, 42, 2000415, *Mechanical Recycling of Packaging Plastics, A Review*, Z.O.G. Schijns, M.P. Shaver

5 Nature Reviews, Materials <u>https://doi.org/10.1038/s41578-020-0190-4</u>, *Chemical Recycling to monomer for an ideal, circular polymer economy*, G.W. Coates and Y.D.Y.L. Getzler.

6 Waste Management 104 (2020) 148–182 Challenges and opportunities of solvent-based additive extraction methods for plastic recycling, Sibel Ügdüler et al.

7 Recycling 2022, 7, 11, Assessment of performance and challenges in use of commercial automated sorting technology for plastic waste., C. Lubongo and P. Alexandridis

8 <u>www.Intechopen.com</u> 2012 *Recent Advances in the Chemical Recycling of Polymers*, D.S. Achilias et al.

9 *Sci. Adv.* 2020; 6 : eaba7599, *Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation*, Walker *et al.*,

10 Grün Book – *CLOSING THE WASTE LOOP THROUGH INNOVATIVE PLASTIC RECYCLING 2020* 11 Environ. Sci. Technol. 2010, 44, 8264-8269. *Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers*, M.D. Tabone et al.

12 J. of Industrial Ecology 2021, 25, 1318-1337 *Techno-economic assessment and comparison of different plastic recycling pathways*, R. Volk et al.

13 Waste Management 105 (2020) 128-138 *Technologies for chemical recycling of household plastics-A technical review and TRL assessment,* M. Solis, S. Silveria

14 Resources, Conservation and Recycling Vol 145, 2019, p 67-77, *LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore*, Hsien H. Khoo

15 Macromol. Chem. Phys. 2022, 223, 2100488 *The Frontier of Plastics Recycling: Rethinking Waste as a Resource for High-Value Applications* Hannah Mangold et al.

16 Macromol. Chem. Phys. 2022, 223, 2200111 *Getting the Terms Right: Green, Sustainable, or Circular Chemistry?*, Hatice Mutlu and Leonie Barner

17 Canadian Journal of Chemical Engineering, 2021, vol 99, p 31–60.Sustainable polymer reaction engineering: Are we there yet?, M. Dube et al.

18 Resources, Conservation & Recycling 179 (2022) 106126 *Recyclable-by-design mono-material flexible packaging with high barrier properties realized through graphene hybrid coatings* Marco Guerritore et al.

19 A*Star Research Issue 21 | January – February 2021 p 29, *Making plastics more easily recyclable* Thoniyot et al.

20 Macromolecules **53**, 3994-4011 (2020). *Degradable Poly(alkyl acrylates) with Uniform Insertion of Ester Bonds, Comparing Batch and Semibatch Copolymerizations*, Lena et al.

21 J. Am. Chem. Soc. 2020, 142, 2100–2104 A Polymer with "Locked" Degradability: Superior Backbone Stability and Accessible Degradability Enabled by Mechanophore Installation, Hsu et al.

22 Science 334, 965 (2011, *Silica-like malleable materials from permanent organic*

networks. L. Leibler et al.

23 <u>www.bio-based.eu/markets</u> *Bio-based Building Blocks and Polymers in the World*, Pia Skoczinski, et al. Edition 2020

24 Procedia CIRP 116 (2023) 522–527 *Life Cycle Assessment of Plastic Waste End-of-life Treatments in Singapore*. Jonathan Low et al

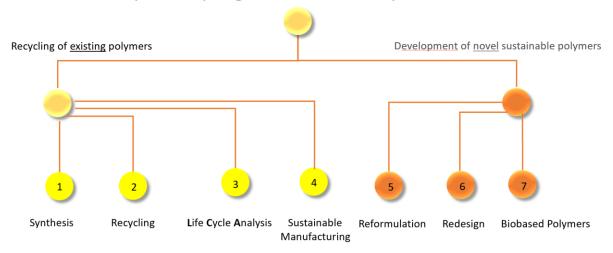
Course Policies and Student Responsibilities

(1) General

You are expected to complete all assigned pre-class (live sessions) readings and activities, attend all live sessions punctually and take all scheduled assignments and quizes by due dates. You are expected to take responsibility to follow up with course notes, assignments and course related announcements for seminar sessions they have missed. You are expected to view all pre-recorded lectures before the respective live sessions.

(2) Absenteeism

Absence from a live session without a valid reason will affect your overall course grade. Valid reasons include falling sick supported by a medical certificate and participation in NTU's approved activities supported by an excuse letter from the relevant bodies.


If you miss a live session, you must inform the course instructor via email prior to the start of the class.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the academic integrity website for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Polymer Recycling and Sustainable Polymeric Materials

Instructor	Office Location	Phone	Email	
A.M. van Herk	NA	+31-643164333	a.m.v.herk@tue.nl	
lanned Weekly Sched	ule (2 hours per week)			
	Торіс		Readings/ Activities	
CA / videos		ILO	before respective	
			session	
Week 1 M1L1	Introductory meeting	1, 2	Refresh knowledge	
16-1	Materials classification	,	on step-growth	
M1L2	Key materials properties	;	polymerization.	
	Step-growth			
	polymerization			
Week 2 M1L2	Chain-growth polym.	1, 2	Refresh knowledge	
23-1 Modul 1	(radical polymerization)		on chain-growth	
	Live session 1 (ILO 1,2)		polymerization.	
	Quiz 1 (ILO 1, part of 2)			
Week 3 M1L2	Chain-growth polym.	2, 3, 4, 5	Read ref 7	
	(Ionic, Coord.)			
M2L1	Environmental issues			
	Collecting and sorting of			
	materials.			
M2L2	Primary recycling			
Week 4 M2L3	Secondary/mechanical	3, 4, 5	Read ref 4	
	recycling with			
	deterioration of			
Modul 2-	properties and remedies	5		
	Live session 2 (ILO 11)			
	Quiz 2 (ILO 3,4,5,Pri, Sec			
Week 5 M2L4	Tertiary/chemical	5	Read ref 5	
	recycling			

Week 6 M2L5	Quaternary recycling (energy recovery and/or compostable materials) Live session 3 (ILO 11) Quiz 3 (ILO 5)	5, 11	Read ref 24
Week 7 M3L1-L2-L3 -	Life Cycle Analysis	6	Read ref 14
Week 8 recess			
Week 9 M4L1 13-3	Aspects of sustainable manufacturing of materials, polymerization	7, 11	Read ref 17 and do a literature search on sustainable manufacturing
Modul 4	techniques. Live session 4 (ILO 11) Quiz 4 (ILO 6)		
Week 10 M4L2-L3	Aspects of sustainable manufacturing of materials (<i>eg</i> emulsion polymerization, copolymerization)	7, 8	Read selected paper from previous session (week 8)
M5L1-L2-L3 Modul 5 –	Reformulation of materials for increased sustainability -Monomaterials -Additives		
Week 11 M6L1-L2	Redesign of materials on molecular level; physical crosslinks, reversible crosslinks (vitrimers) Live session 5 (ILO 11) Quiz 5 (ILO 7, 8)	9, 11	Read ref 22
Week 12 M6L3	Redesign of materials on molecular level -Insertion of weak bonds	9	Read ref 20 Select you essay topic

Week 13 M7L1-L2-L3	Biobased building blocks	10	Read ref 23
N 117	Biobased materials		
Modul 7 –	replacements		
	Live session 6 (ILO 11)		
	Quiz 6 (ILO 9, 10)		
	Essay writing, after	12	
	submission a 15 min		
	feedback session will be		
	held individually.		

Appendix 1

Quizzes

Criteria	Unsatisfactory: <40%	Borderline: 40% to 49%	Satisfactory: 50% to 69%	Very good: 70% to 89%	Exemplary: >90%
1 explain the	Lacks understanding of	Some understanding of	Can classify the two main	Can classify the two main	Can classify the two main
important aspects of	what a polymerization	what a polymerization	polymerization	polymerization	polymerization
the polymerization	mechanism is. Cannot	mechanism is but cannot	mechanisms but cannot	mechanisms and can name	mechanisms and can name
mechanisms of	explain important	name them and only	name important aspects	important aspects but	all important aspects.
materials	aspects of	partially can mention	or only one.	misses out on one or two.	
	polymerization	important aspects.			
	mechanisms				
2 classify the main	Cannot mention any	Can mention 3-4	Can mention 3-4 different	Can mention 4 different	Can mention 4 different
materials according	materials nor associate	different polymeric	polymeric materials and	polymeric materials and	polymeric materials and
to key materials	them with key	materials but cannot	can at least for one	can associate the materials	can associate with their key
properties and	materials properties. Is	associate them with	material associate with	with most of their key	materials properties.
polymerization	not able to match the	their key materials	their key materials	materials properties.	Is able to match all the
mechanism of	materials with the	properties. Is only able	properties.	Is able to match most of	materials with the
formation.	polymerization	to match one or two of	Is able to match most of	the materials with the	polymerization mechanism
	mechanism of	the materials with the	the materials with the	polymerization mechanism	of formation.
	formation.	polymerization		of formation.	

		mechanism of formation.	polymerization mechanism of formation.		
3 identify the mair environmental issu with polymer wast	ues negative aspects of	Can mention one or two environmental issues but cannot give any further details.	Can mention most environmental issues but cannot give any further details.	Can mention most environmental issues and can give further details on one or two of them.	Can mention all environmental issues and can give detailed information about all of them.
4 identify the most important aspects polymer waste collection and sorting.		Can identify some aspects of either polymer waste collection or sorting.	Can identify some aspects of polymer waste collection and sorting.	Can identify most aspects of polymer waste collection and sorting.	Can identify all aspects of polymer waste collection and sorting.
5 explain the main aspects and currer industrial applications of the four polymer recycling routes	nt polymer recycling routes and cannot give	Is aware of the four polymer recycling routes but not in any detail and cannot give any examples of industrial applications of polymer recycling routes.	Is aware of the four polymer recycling routes and can give most aspects of those routes and can give one or two examples of industrial applications of polymer recycling routes.	Is aware of the four polymer recycling routes and can give most aspects of those routes and can give examples of industrial applications of most of the four polymer recycling routes.	Is aware of the four polymer recycling routes and can give all aspects of those routes and can give examples of industrial applications of each of the four polymer recycling routes.
Criteria	Unsatisfactory: <40%	Borderline: 40% to 49%	Satisfactory: 50% to 69%	Very good: 70% to 89%	Exemplary: >90%
6 explain the main aspects of life cycle analysis	Unable to mention the foundations of LCA on polymers.	Able to comprehend one of the following aspects of LCA: raw material extraction, processing, manufacturing, use, re- use and disposal/recycling	Able to comprehend two of the following aspects of LCA: raw material extraction, processing, manufacturing, use, re- use and disposal/recycling	Able to comprehend most of the following aspects of LCA: raw material extraction, processing, manufacturing, use, re-use and disposal/recycling	Able to comprehend the following aspects of LCA: raw material extraction, processing, manufacturing, use, re-use and disposal/recycling
7 give examples of aspects of sustainable	Unable to mention any aspects of sustainable manufacturing. Is not	Able to mention one or two aspects of sustainable manufacturing. Is not	Able to mention one or two aspects of sustainable manufacturing. Is aware	Able to mention most of the aspects of sustainable manufacturing. Is aware of	Able to mention the aspects of sustainable manufacturing. Is aware of

manufacturing of materials	aware of any aspects of emulsion polymerization.	aware of any aspects of emulsion polymerization.	of some aspects of emulsion polymerization.	main aspects of emulsion polymerization.	all aspects of emulsion polymerization.
8 to apply aspects of reformulation of materials to make then more sustainable	Unable to read and understand materials science literature on formulations of materials. Unable to apply aspects of reformulation of materials to make them more sustainable.	Can read simple materials science literature and partially understand the formulation aspects. Can partially apply some aspects of reformulation of materials to make them more sustainable.	Can read simple materials science literature and understand the formulation aspects. Can partially apply some aspects of reformulation of materials to make them more sustainable.	Can read and understand materials science literature and understand the formulation aspects. Can partially apply some aspects of reformulation of materials to make them more sustainable.	Can read and understand materials science literature at a high level and understand the formulation aspects. Can apply complex aspects of reformulation of materials to make them more sustainable.
9 to apply aspects of redesigning materials on a molecular level to make them more sustainable	Unable to apply aspects of redesigning of materials on a molecular level to make them more sustainable.	Can read simple materials science literature and partially understand the molecular aspects. Can partially apply some aspects of redesigning of materials to make them more sustainable.	Can read simple materials science literature and understand the molecular aspects. Can partially apply some aspects of redesigning of materials to make them more sustainable.	Can read and understand materials science literature and understand the molecular aspects. Can fully apply some aspects of redesigning of materials to make them more sustainable.	Can read and understand materials science literature at a high level and understand the molecular aspects. Can apply complex aspects of redesigning of materials to make them more sustainable.
10 to explain the main biobased building blocks and biobased replacements of materials	Cannot mention any biobased building blocks and biobased replacement materials.	Can mention one or two biobased building blocks but cannot place them in the appropriate polymerization mechanism. Only can mention one or two biobased replacement materials. For neither of these can give further details on issues.	Can mention for each polymerization mechanism one or two biobased building blocks and can mention one or two biobased replacement materials. For neither of these can give further details on issues.	Can mention for each polymerization mechanism the main biobased building blocks and can mention multiple biobased replacement materials. Can also indicate some issues with using these.	Can mention for each polymerization mechanism the main biobased building blocks and associated challenges with using those building blocks and can mention multiple biobased replacement materials with their strengths and weaknesses.
11 critically read and interpret scientific	Unable to read and understand materials science literature in the	Can read simple materials science literature and	Can read simple materials science literature and	Can read and understand materials science literature	Can read and understand materials science literature at a high level and

literature in the area of sustainable polymeric materials	·····	understand the sustainability aspects.	and understand the sustainability aspects.	understand the sustainability aspects very well.
---	-------	--	--	--

Appendix 2

Class Participation

Standards	Criteria				
A+ (Exceptional) A (Excellent)	Important contributions to class discussion; asks insightful questions; precisely answers questions; participates in a meaningful and constructive manner including enabling other students to contribute but does not dominate; demonstrates thoughtful ideas and opinions in a convincing manner.				
A- (Very good) B+ (Good)	Meaningful contributions to class discussion; ask interesting questions; accurately answer the questions; capacity to articulate and present points of view clearly; participates in a meaningful and constructive manner; evidence of having read and assimilated the class material; Capable to demonstrate ideas and opinions in a convincing manner.				
B (Average) B- (Satisfactory) C+ (Marginally satisfactory)	Some contributions to class discussion; ask some questions; some capacity to articulate and present points of view; some evidence of constructive engagement during discussion; Capable to demonstrate ideas and opinions.				
C (Bordering unsatisfactory) C- (Unsatisfactory)	Minimal contributions to class discussion; ask very little questions; can answer a few questions; limited capacity to articulate and present points of view; limited evidence of constructive engagement during discussion.				
D, F (Deeply unsatisfactory)	Very minimal or no contributions to class discussion; no questions; could not answer questions; no evidence of an individual viewpoint; failure to read the assigned reading; unexplained or unjustified absences from class activities.				

Appendix 3

Essay (ILO 12), with individual live feedback session

Criteria	Unsatisfactory: <40%	Borderline: 40% to 49%	Satisfactory: 50% to 69%	Very good: 70% to 89%	Exemplary: >90%
Comprehension	Unable to comprehend	Partially comprehend	Comprehend some of the	Comprehend most of the	Comprehend the
The ability to	sustainability aspects of	some of the sustainability	sustainability aspects of	sustainability aspects of	sustainability aspects of
comprehend	polymeric materials.	aspects of polymeric	polymeric materials in	polymeric materials in	polymeric materials in
sustainability		materials in relation to	relation to the topic of	relation to the topic of	relation to the topic of
aspects of		the topic of choice.	choice.	choice.	choice.
polymeric					
materials in					
relation to the					
topic of choice.					
Application	Unable to apply	apply a sustainability	Can apply 2-3 aspects of	Can apply most of the	Can apply all different
Ability to apply	sustainability aspects of	aspect of polymeric	sustainability aspects as	sustainability aspects of	aspects of sustainability in
the relevant	polymeric materials as there	materials as there are:	there are: reformulation,	polymeric materials as	combination, as there are:
knowledge,	are: reformulation,	reformulation,	redesigning on molecular	there are: reformulation,	reformulation, redesigning
principles and	redesigning on molecular	redesigning on molecular	level, sustainably aspects	redesigning on molecular	on molecular level,
design aspects	level, sustainably aspects	level, sustainably aspects	during synthesis,	level, sustainably aspects	sustainably aspects during
from the	during synthesis, collection	during synthesis,	collection and sorting,	during synthesis, collection	synthesis, collection and
course on the	and sorting, recycling, life	collection and sorting,	recycling, life cycle	and sorting, recycling, life	sorting, recycling, life cycle
topic of choice.	cycle analysis.	recycling, life cycle	analysis.	cycle analysis.	analysis.
		analysis.			