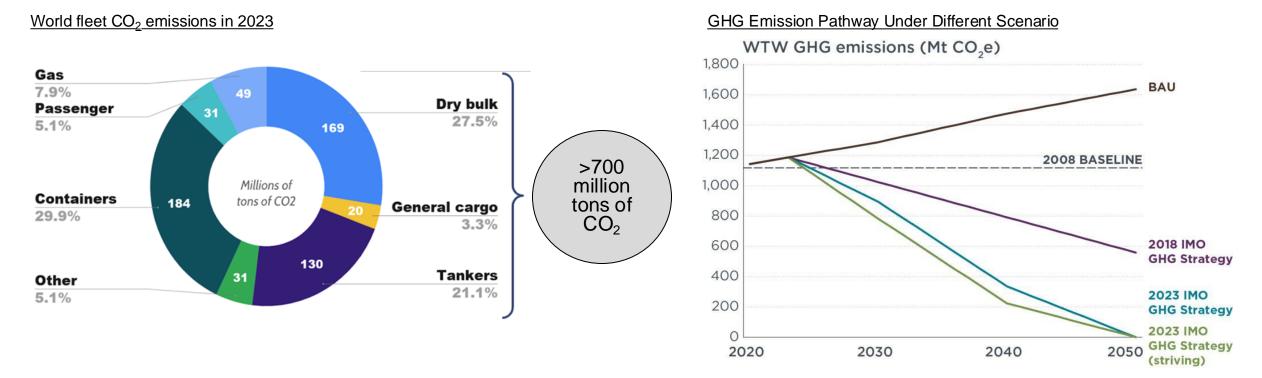


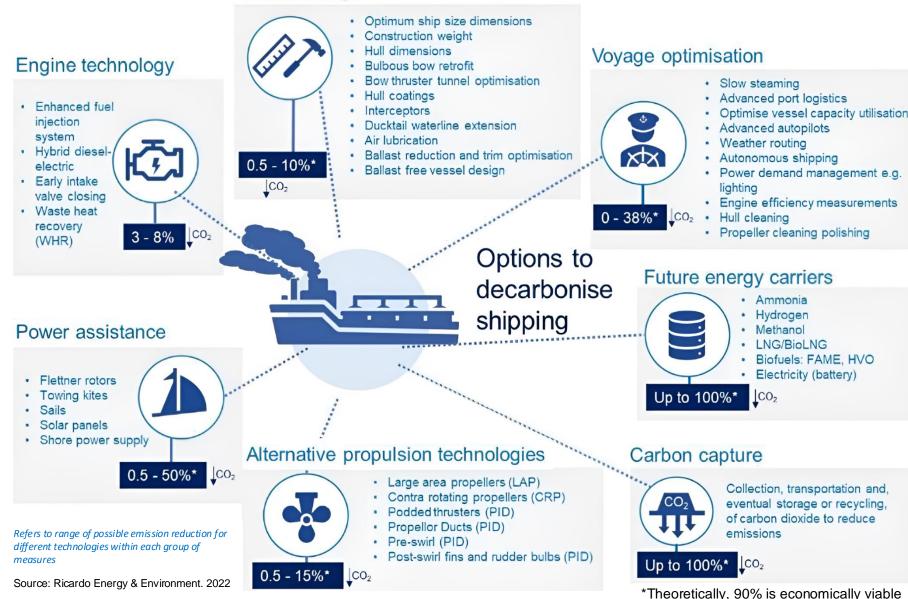
Challenges of Onboard CO₂ Capture and Storage (OCCS)


Kuniadi Wandy Huang Research Manager

Maritime Energy & Sustainable Development Centre of Excellence (MESD)

18 November 2024

CO₂ Emission from Shipping Industry: <u>Trends and Regulations</u>

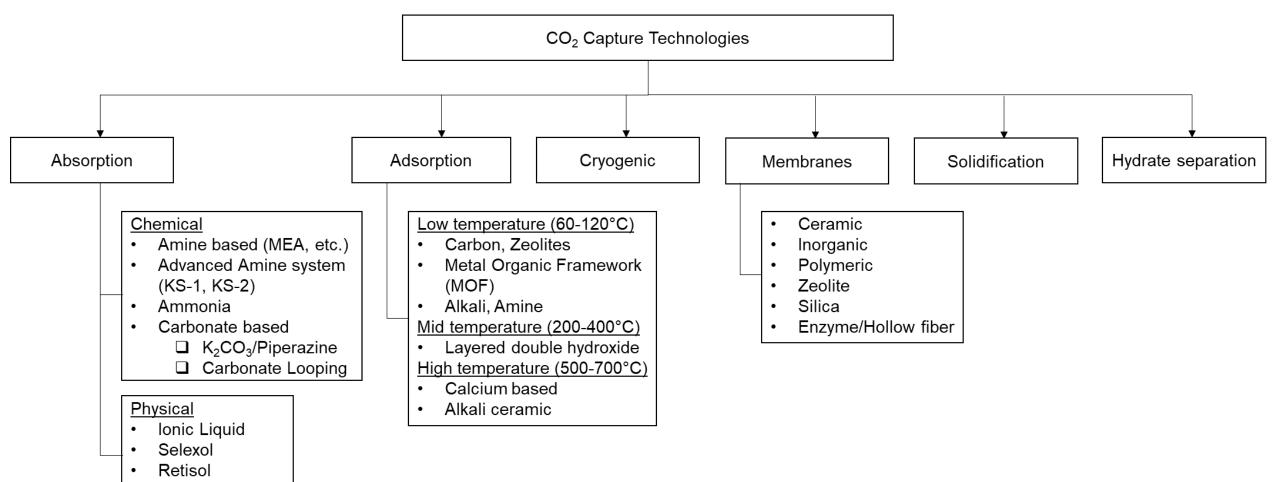

IMO Action to Reduce Greenhous Gas Emissions from International Shipping

2008	2018	2023	2023-2030	2030	2040	2050	
2011	2018	2023	2023 – 2030	2030	2030 - 2050	2050	
Base Year	Initial IMO strategy on reduction of GHG emissions from ships	2023 IMO strategy on the reduction of GHG emissions from ships	 Low carbon fuels Emission reduction mechanisms Market-based measures (CO₂ tax) 	 20% Total reduction in CO₂ 40% reduction in CO2 emission per transport work 	70% reduction of total annual GHG	Net-zero GHG Emission	

Source: IMO. 2019

Pathwav Towards Ship Decarbonisation

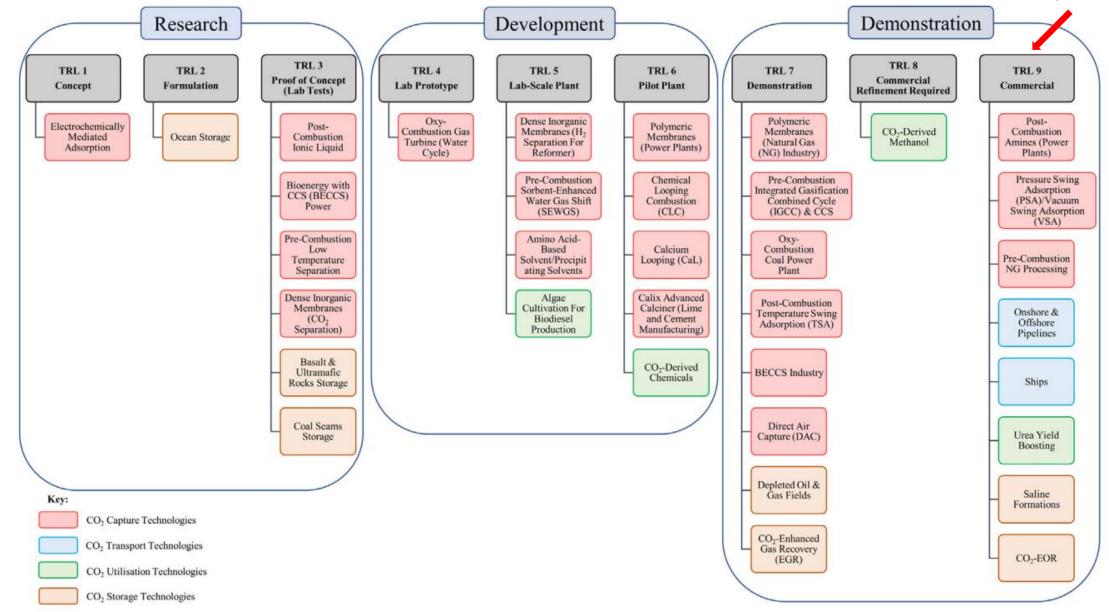
Vessel design



A combination of multiple approaches is the way forward to achieve decarbonisation of the maritime industry.

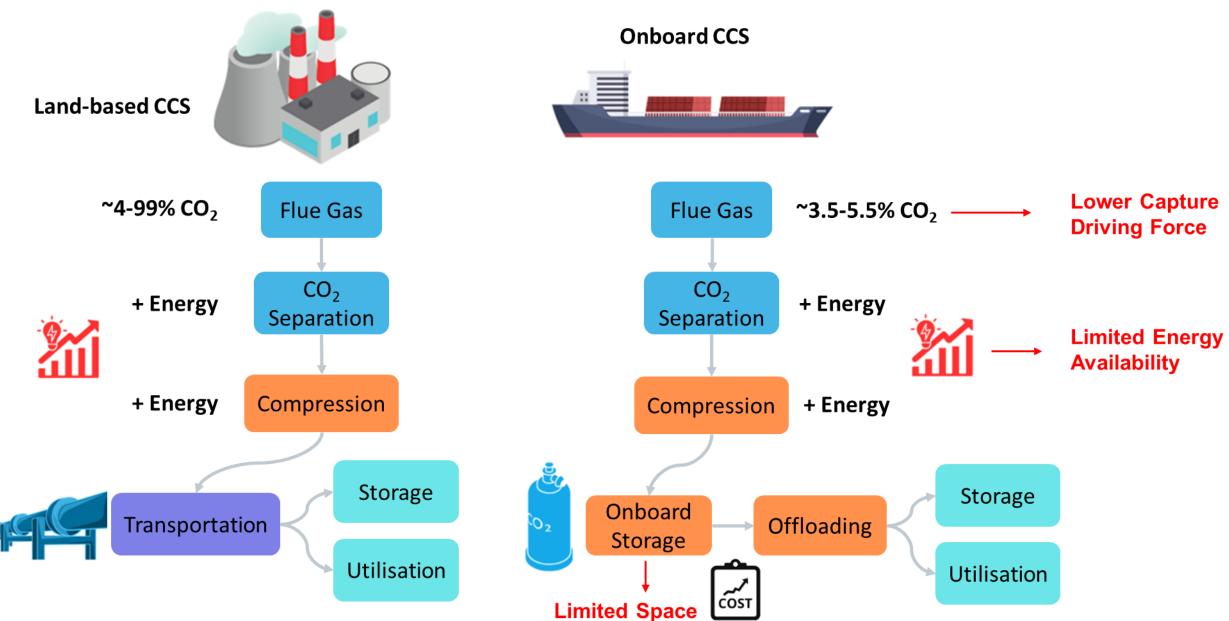
3

MESD Centre of Excellence © 2024. Nanyang Technological University. All rights reserved.

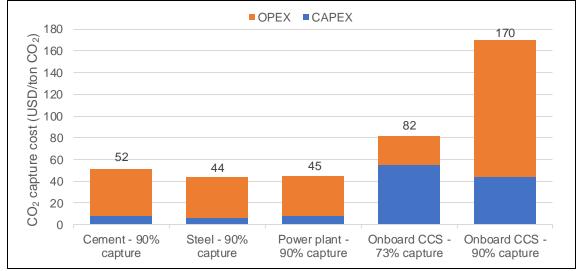

Post-combustion Capture Technologies: <u>Overview</u>

Fluor

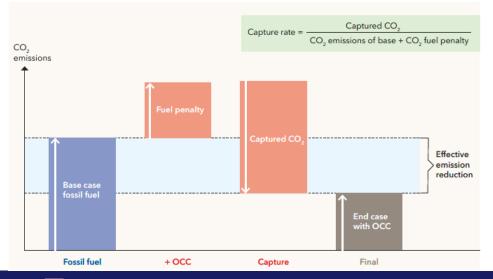
Technology Readiness Level for Different CCUS Technology


TRL for land-based CO_2 Capture. TRL for Onboard CO_2 Capture is expected to be lower.

5


MESD Centre of Excellence © 2024. Nanyang Technological University. All rights reserved.

Differences Between OCCS and CCS


Case Study: The Simulation of Conventional Amine (MEA) for Onboard CCS

Cost comparison between land-based CCS and OCCS

Source: Roussanaly et al. 2018

Fuel penalty to be included to obtain effective CO₂ capture

Description	Case				
	No Capture	Onboard CCS- 73% capture	Onboard CCS- 90% capture		
Main engine power, MW		17			
Auxiliary engine, MW					
CO ₂ capture system	Without CO ₂ capture	Amine-based	Amine-based		
CO ₂ removal		73%	90%		
CCS power consumption (MW_e)		0.86	1.1	Energy	
Regeneration duty (MW_{th})	-	7.8	12.2	intensive	
Equipment size	-	A: φ4.2mxH12.5m S: φ1.6mxH6.5m Amine tank0.65m ³	A:	_Huge footprint	
CO ₂ storage (m ³)	-	560 (liquefied CO ₂)	940 (liquefied CO ₂)		
Cost of CCS (USD/ton CO ₂)	-	82	170		

Source: Luo and Wang, 2018

Although conventional amine system (MEA) is a proven technology for power plants, it may not be directly applicable for ships because of its huge footprint and high energy requirement, leading to a higher cost per ton of CO_2 .

MESD Centre of Excellence © 2024. Nanyang Technological University. All rights reserved.

Challenge of CCS to meet IMO – Ship Types

LNG Carrier Tanker		Bulk Carrier	Container	
 Integration of cooling from LNG for liquefaction 	 More available space for CO2 storage on deck 	+ / - Bigger ship may have space, but smaller vessels have more energy and space constraints	 Frequent port calls enable less CO₂ to be stored onboard. However, this depends on the maturity of CCUS supply chain 	
 Lesser CO₂ from LNG require lesser space and energy 	 Energy and space constraints for higher CO₂ capture rate 	 Energy and space constraints for higher CO₂ capture rate 	- Cost loss may be more significant because of container loss.	
- Space constraints	- Cargo loss	- Cargo loss		
Source: DNV				

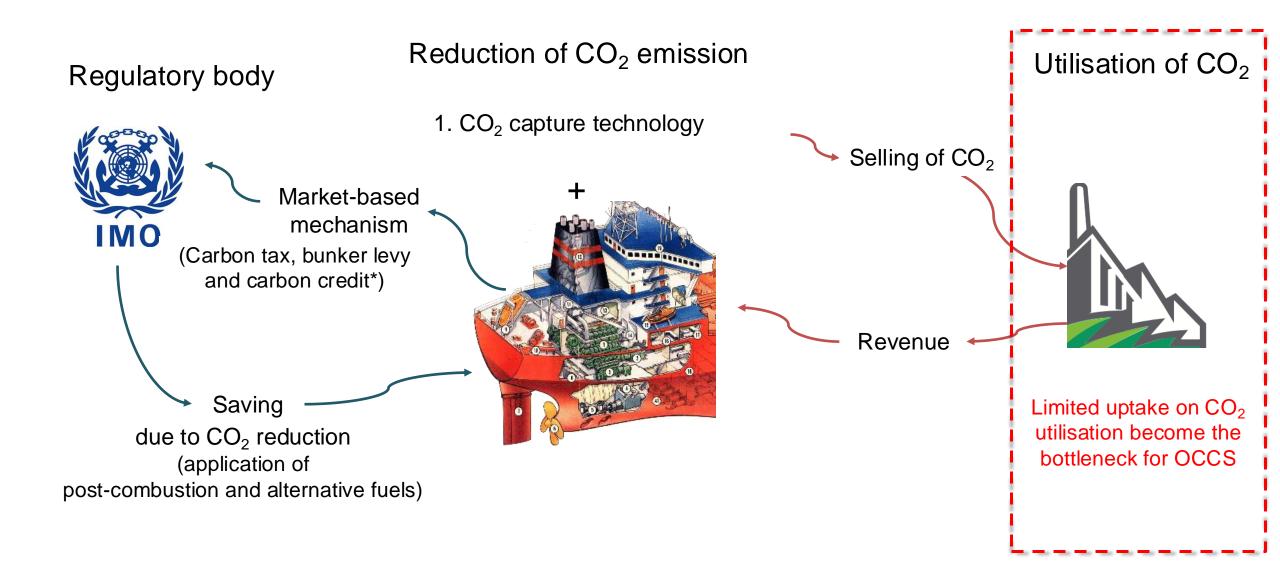
Challenge of CCS to meet IMO – Space Requirement

Impact of voyage duration and capture rate to the space requirement of CO₂ storage

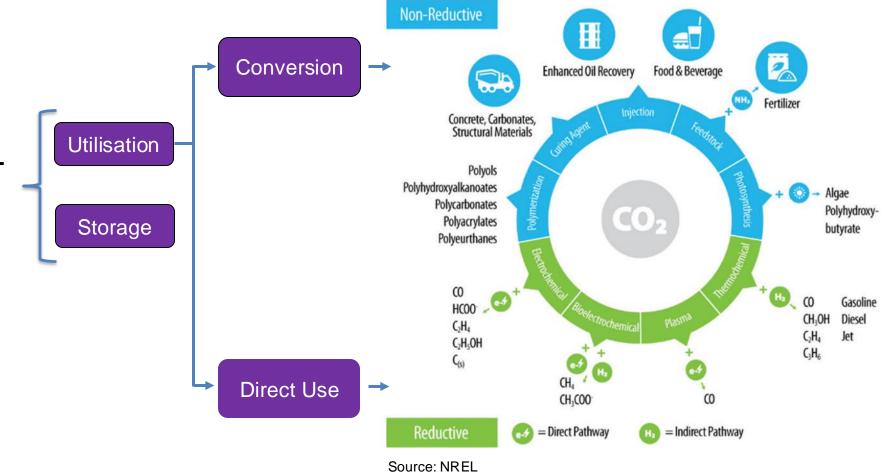
	Volume of Fuel Used	Volume of liquefied CO ₂ captured in 1 trip of ~2700 hours (m ³)		
		30% Capture	90% Capture	
Scenario 1	100% Fuel Tank	2,387	7,161	
Scenario 2	75% Fuel Tank	1,791	5,373	
Scenario 3	50% Fuel Tank	1,194	3,582	
Scenario 4	25% Fuel Tank	597	1,791	

The different scenario shows that lower CO₂ capture and lesser trip duration will reduce space requirement for CCS:

Scenario 1:


9

• there is no CO₂ offload throughout the entire trip (CO2 is captured and stored throughout voyage duration)

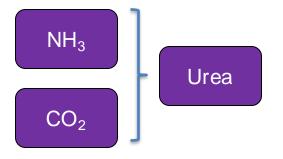

Scenarios 2 to 4:

- CO_2 needs to be offloaded at the nearest port when 75%, 50%, or 25% of fuel was consumed.
- This can reduce the space requirement to store CO₂ after CCS before interim offload
- Each scenario may not be applicable to all type of ships
- Container ship may be able to be in Scenario 1
- Other ship types may not have frequent port of call

Economic Aspects – Ship Owners and Operator

CO₂ Storage and Utilisation

International Energy Agency (IEA) estimate CO_2 utilisation is around 230 million tons CO_2 in 2019:

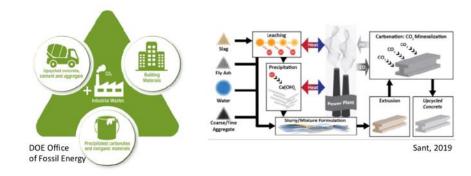

- Fertiliser : 57%
- EOR: 34%
- Food and beverages: 6%
- Others: 3%

This is less than 30% of CO_2 emitted by the shipping industry

MESD Centre of Excellence © 2024. Nanyang Technological University. All rights reserved.

CO₂ Storage and Utilisation

Fertiliser production


Algae cultivation for biodiesel production

Injection of flue gas into an open algae system (Orlando, Florida, USA)

US Dept of Energy, 2020

Additives for concrete production

Conversion to fuels/chemicals	Pathways	Application/ Product	CO ₂ Utilised (Mt CO ₂ /year)	Product Produced (Mt/year)	CO ₂ Storage Period	TRL	
	Direct usage	Algae cultivation for biodiesel	2.0	1.0	Weeks/Months	4 to 7	
CO ₂		Beverage carbonation	2.9	2.9	Days/Months	9	
Acetobacterium		Enhanced oil and gas recovery (EOR/EGR)	25.0	7% to 23% of oil reserve; <5% of gas reserve	Millennia	9	
Sulfurospirillum		Food packaging	8.2	8.2	Days/Months	9	i
Rhodobacteraceae		Industrial gas	6.3	6.3	Days/Months	9	
		Urea yield boosting	132.0	180.0	Days/Months	9	i
\rightarrow Acetate, CH ₄ , H ₂	Conversion	Carbonates	0.5	>2.0	Decades/Centuries	7 to 8	1
		Methanol	10.0	60.0	Weeks/Months	7 to 8	1
MES Fuel Cell		Chemicals (such as	6.5	28.0	Days/Decades	6 to 8	1
		formaldehyde and				1 i	
Gulliver, 2019. US DOE/NETL Annual Meeting, Carbon Capture and Utilization, August 2019, Pittsburgh, PA		acrylates)				. i	1
		Polymers (such as	1.5	15.0	Months/Decades	7	
		polycarbonates and					
		polyurethanes)				i	

The majority of CO₂ uptake is fertiliser industry, followed by EOR. Other technologies are still in development and not yet at commercial level

12

MESD Centre of Excellence © 2024. Nanyang Technological University. All rights reserved

Summary

Торіс	Challenges	Potential Solutions		
Capture Rate	CCS will not be able to reach net zero by its own	CCS can be combined together with alternative fuel to improve capture rate		
Energy Consumption	CCS requires energy. Proper configuration and additional energy may be required to achieve targeted CO ₂ capture percentage	Better solvent and heat recovery management		
Space Requirement	Cargo loss from CCS unit	Frequent port of call and/or lower CO ₂ capture rate		
Cost	It is more expensive than land-based CCS. How much more expensive depends on many factors, including the uptake on CCS	Better solvent/technology, design optimisation, combined with existing HFO+scrubber system		
CO ₂ Utilisation	Limited CO_2 handling infrastructure, slow development on CO_2 utilisation technology	Development of high TRL technology, hybrid solutions (storage and utilisation)		

CCS faces challenges posed by the CO₂ offloading and logistic. The current economics of CCS offtake are not currently viable based on prevailing technological trends.

Thank you

@Maritime Energy & Sustainable Development Centre of Excellence (MESD)

D-MESD@ntu.edu.sg

https://www.ntu.edu.sg/mesd-coe

Scan to follow MESD on LinkedIn

MESD Centre of Excellence © 2024. Nanyang Technological University. All rights reserved.

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE