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CO, Emission from Shipping Industry: Trends and Regulations

World fleet CO, emissions in 2023
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Pathwav Towards Ship Decarbonisation

Vessel design

+ Optimum ship size dimensions
« Construction weight

« Hull dimensions i :
Engine technology « Bulbous bow retrofit Voyage optimisation
« Bow thruster tunnel optimisation + Slow steaming
- * Hull coatings + Advanced port logistics
i Ephapced - * Interceptors « Optimise vessel capacity utilisation
injection « Ducktail waterline extension - Advanced autopilots
SYSte.m i « Air lubrication « Weather routjng
* Hybrid diesel- WPll: © Ballast reduction and trim optimisation . « Autonomous shipping
electric 0.5-10%" =N design + Power demand management e.g.
Early mtakg lighting
Taie caing o + Engine efficiency measurements
. 1\'/4;/jcs>'\t/eer};/eat . 0-38%" >+ Hull cleaning
(WHR) P e ey e A combination of multiple
. Options to . approaches is the way
. Future energy carriers :
—r—— decarbonise 3 forward to achieve
H H + Hydrogen i i
Power assistance E Shlpplng ............. ¢ Methanol decart?qnlsa}tlon of the
. B, ...covensnneeness + LNG/BioLNG maritime industry.

« Biofuels: FAME, HVO
» Electricity (battery)

Up to 100%™ lC()?

* Flettner rotors

« Towing kites

« Sails

« Solar panels

» Shore power supply

<
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Alternative propulsion technologies Carbon capture

0.5 -50%" [ielen
l LEIDE SThA propel[ers (LAP) 4 Collection, trensportation and,
*1 AR . e (LT eventual storage or recycling,
: godde”dthl;ust‘ersp(l%lD) of carbon dioxide to reduce
Refers to range of possible emission reduction for lapelar UUCE ( ) emissions

+ Pre-swirl (PID)
+ Post-swirl fins and rudder bulbs (PID)

different technologies within each group of
measures

Up to 100%* JIseH

0.5 -15%*

Source: Ricardo Energy & Environment. 2022

*Theoretically, 90% is economically viable
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Post-combustion Capture Technologies: Overview

CO, Capture Technologies

Absorption Adsorption Cryogenic Membranes Solidification Hydrate separation
Chemical Low temperature (60-120°C) + Ceramic
*+ Amine based (MEA, etc.) « Carbon, Zeolites * Inorganic
* Advanced Amine system * Metal Organic Framework « Polymeric
(KS-1, KS-2) (MOF) « Zeolite
«  Ammonia » Alkali, Amine « Silica
+ Carbonate based | Mid temperature (200-400°C) + Enzyme/Hollow fiber
0 K,COs/Piperazine « Layered double hydroxide
O Carbonate Looping High temperature (500-700°C)
« Calcium based
Physical « Alkali ceramic
* lonic Liquid
| = Selexol
+ Retisol
*  Fluor
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Technology Readiness Level for Different CCUS Technology

TRL for land-based CO, Capture.
TRL for Onboard CO, Capture is
expected to be lower.
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Differences Between OCCS and CCS
Onboard CCS

>

Land-based CCS

i’: NN r
- ~3,5-5.5% CO, LO-W-eIf' Capture
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?/ Limited Energy
Availability
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‘ r - Storage s - Storage
Utilisation l Utilisation
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~4-99% CO,
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Case Study: The Simulation of Conventional Amine (MEA) for Onboard CCS

Cost comparison between land-based CCS and OCCS

EOPEX ®CAPEX
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Cement - 90% Steel - 90%
capture capture

CO;, capture cost (USD/ton CO5,)

o

Power plant -

90% capture 73% capture 90% capture

Onboard CCS - Onboard CCS -

Description Case Study : Amine-based system for
No Capture Onboard CCS- Onboard CCS-

73% capture 90% capture
Main engine power, MW 17
Aucxiliary engine, MW 3
CO; capture system Without CO, Amine-based Amine-based

capture

CO, removal 73% 90%
CCS power consumption 0.86 1.1
(MWe)
Regeneration duty (MW;n) - 7.8 122

Source: Roussanaly et al. 2018

Fuel penalty to be included to obtain effective CO, capture

Captured CO,

Capture rate =
CO, emissions of base + CO, fuel penalty

CO,
emissions
b

Effective
emission
reduction

Fossil fuel +0CC Capture Final

Equipment size

- A: $4.2mxH12.5m
S: $1.6mxH6.5m
Amine tank0.65m3

A: $4.9mxH12.5m
S: ¢$2.1mxH6.5m
Amine tank: 1.0m3

CO, storage (m3)

- 560 (liquefied
COy)

940 (liquefied COy)

Cost of CCS
(USD/ton COy)

- 82

170

Source: Luo and Wang, 2018
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Energy
intensive

Huge
footprint

Although conventional amine system (MEA) is a proven technology for power plants,
it may not be directly applicable for ships because of its huge footprint and high
energy requirement, leading to a higher cost per ton of CO,.
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Challenge of CCS to meet IMO — Ship Types

+ Frequent port calls enable less CO,

+/ - Bigger ship may have space, but to be stored onboard. However,

+ Integration of cooling from LNG for + More available space for CO2
smaller vessels have more

liquefaction storage on deck . this depends on the maturity of
energy and space constraints .
CCUS supply chain
+ Lesser CO, from LNG require lesser - Energy and space constraints for - Energy and space constraints for - Cost loss may be more significant
space and energy higher CO, capture rate higher CO, capture rate because of container loss.
- Space constraints - Cargo loss - Cargo loss
Source: DNV
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Challenge of CCS to meet IMO — Space Requirement

Impact of voyage duration and capture rate to the space requirement of CO2 storage

Volume of liquefied CO, captured in 1 trip of ~2700 hours

Volume of Fuel Used (m?)
30% Capture 90% Capture
Scenario 1 100% Fuel Tank 2,387 7,161
Scenario 2 75% Fuel Tank 1,791 5,373
Scenario 3 50% Fuel Tank 1,194 3,582
Scenario 4 25% Fuel Tank 597 1,791

The different scenario shows that lower CO, capture and lesser trip duration will reduce space requirement for CCS:

Scenario 1:

* thereis no CO, offload throughout the entire trip (CO2 is captured and stored throughout voyage duration)

Scenarios 2to 4:

* CO, needs to be offloaded at the nearest port when 75%, 50%, or 25% of fuel was consumed.
* This can reduce the space requirement to store CO, after CCS before interim offload

* Each scenario may not be applicable to all type of ships
* Container ship may be able to be in Scenario 1
e Other ship types may not have frequent port of call
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Economic Aspects — Ship Owners and Operator

Reduction of CO, emission
Regulatory body

1. CO, capture technology
\ Selling of CO,

mechanism

(Carbon tax, bunker levy
and carbon credit*)

&Y
\\I\Q b’y \ Market-based
IMO

\ Revenue
Saving /

due to CO, reduction
(application of
post-combustion and alternative fuels)

Limited uptake on CO,
utilisation become the
bottleneck for OCCS

10 g NANYANG TECHNOLOGICAL UNIVERSITY 'SINGAPORE MESD CentrelofEAtclil
© 2024. Nanyang Technological University. All rights reserved.



CO, Storage and Utilisation

md Conversion kas

International Energy Agency (IEA)
estimate CO, utilisation is around 230
Enhanced Ol Recovery  Food & Beverage ‘ million tons CO, in 2019:

' * Fertiliser : 57%
(J] - Concrete, Carbonates, s * EOR: 34%
5 Utilisati H Structural Materials * Food and beverages: 6%
ry Hisation + Others: 3%
© Polyols
O == Po lka . .
' "“"’;’;";;,;3:: + Q- :o"«:;*hydm This is less than 30% of CO, emitted
fd - . . .
n Polyacrylates by the shipping indust
s Storage vt butyrate y PPINg ry
& Q.0 Gasolioe
HC0O .
CH. CHOH  Diesel
(§H oH GHe  Jet
¢ ; + GH,
s) (H& o Q
—p i —> L \
Direct Use (H00 o

Source: NREL
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CO, Storage and Utilisation

Fertiliser production Algae cultivation for biodiesel production  Additives for concrete production

Injection of flue gas into an open algae system (Orlando, Florida, USA)

NH3

DOE Office
of Fossil Energy .

Sant, 2019

US Dept of Energy, 2020

CO, Utilised Product Produced i :

C . f I / h . I Pathways Application/ Product (Mt CO,/year) (Mt/year) CO, Storage Period : TRL 1
O nve rS I 0 n to ue S C e m I Ca S Direct usage Algae cultivation for 2.0 1.0 Weeks/Months 1 47 i
biodiesel 1 1

co Beverage 29 29 Days,/Months : 9 :

2 carbonation 1 I

i Enhanced oil and gas 25.0 7% to 23% of oil Millennia 1 9 1

: recovery (EOR/EGR) reserve; <5% of gas 1 1

reserve 1 1

Food packaging 8.2 8.2 Days/Months : 9 :

Industrial gas 6.3 6.3 Days,/Months 1 9 1

Urea yield boosting 132.0 180.0 Days/Months 1 9 1

Acetate, CH,, H Conversion Carbonates 0.5 >2.0 Decades/Centuries : 7w8 1

e Methanol 10.0 60.0 Weeks/Months i 7to§ 1

Chemicals (such as 6.5 28.0 Days/Decades 1 68 :

formaldehyde and 1 1

Gulliver, 2019. US DOE/NETL Annual Meeting, Carbon Capture and Utilization, August 2019, Pittsburgh, PA acry]ates) 1 1
Polymers (such as 1.5 15.0 Months,/Decades : 7 1

polycarbonates and 1 :

polyurethanes) | I

The majority of CO, uptake is fertiliser industry, followed by EOR. Other technologies are still in development and not yet at commercial level
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Summary

Topic Challenges Potential Solutions
Capture Rate CCS will not be able to reach net zero by its own ccs ca.n = comb-lned B
alternative fuel to improve capture rate
Energy CCS requires energy. Proper configuration and additional energy may be required to Better solvent and heat recovery
Consumption achieve targeted CO, capture percentage management
Space
r.J Cargo loss from CCS unit Frequent port of call and/or lower CO,
Requirement capture rate

It is more expensive than land-based CCS. How much more expensive depends on Better solvent,/technology, design

Cost . . optimisation, combined with existing
many factors, including the uptake on CCS HFO-+scrubber system
CO, Utilisation Limited CO, handling infrastructure, slow development on CO, utilisation technology DIEEIRPIEE E A0 TG EREIE e, L7

solutions (storage and utilisation)

CCS faces challenges posed by the CO, offloading and logistic. The current economics of CCS offtake are not currently viable
based on prevailing technological trends.
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Thank you

m @Maritime Energy & Sustainable Development
Centre of Excellence (MESD)

@ D-MESD@ntu.edu.sg

@ https://www.ntu.edu.sg/mesd-coe

Scan to follow MESD on Linkedin [B] 5
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