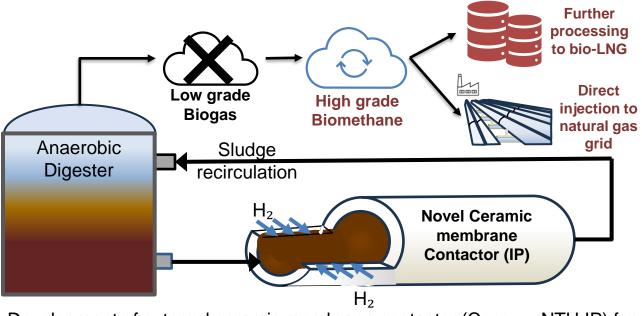

NEWRI INNOVATION

IN-SITU H₂ ASSISTED BIOGAS UPGRADING TOWARDS BIO-LNG

Biogas produced from anaerobic digestion of biomass. has low energy content (20 MJ/m³ - 65% CH₄) greatly limits its use as an efficient energy resource. **Upgrading of biogas to biomethane greatly improves the energy content (36 MJ/m³, >95% CH₄),** serving as direct energy substitute for natural gas and further conversion to LNG.

Method:

- External ceramic membrane contactor module coupled to typical ADs for efficient H₂ injection
- H₂ gas transfer and dissolution occurring at membrane inner surface
- Use of sludge recirculation



Key results

99.1	Max CH ₄ content (%)
108	CH ₄ production increase (%)
99.6	H ₂ utilization rate (%)

${ m CH_4}$ production rate (mL/L/day) 180 100% Gas Composition (%) 150 75% CH_{4} 120 50% CO₂ 90 H_2 25% 60 20 20 40 80 40 60 80 60 Time (d) Time (d)

Development of external ceramic membrane contactor (Conny – NTU IP) for in-situ H₂ assisted biogas upgrading

Benefits:

- Excellent biomethane quality compared to conventional methods
- Low fouling & long lifespan
- Ease of maintenance and retrofitting
- High grade biomethane production for direct gas grid injection or bio-LNG production

Presented by

Biotechnology and Bioprocesses Nanyang Environment and Water Research Institute

Details:

Project funded by Conny Tech Pte Ltd Contact information: Zhouyan@ntu.edu.sg; chanhl@conny.sg

