Paper

An Identity via Arbitrary Polynomials

Dong Fengming ${ }^{1}$, Ho Weng kin ${ }^{1}$, Lee Tuo Yeong ${ }^{2}$
${ }^{1}$ MME, NIE, Singapore
${ }^{2}$ NUS High School, Singapore

- Our paper was published in

THE COLLEGE MATHEMATICS JOURNAL, VOL. 44, NO. 1, 2014.

A journal of THE MATHEMATICAL ASSOCIATION OF AMERICA

Started from two conjectures

Started from two conjectures

The following conjectures were posed by Thomas Dence in a paper in CMJ in 2007.

Conjecture

Let n and k be odd positive integers with $k \leq n$. Then

$$
\sum_{j=0}^{(n-1) / 2}\binom{n}{j}(-1)^{j}(n-2 j)^{k}= \begin{cases}0, & \text { if } k<n \\ 2^{n-1} n!, & \text { if } k=n\end{cases}
$$

Conjecture

Let n and k be even positive integers with $k \leq n$. Then

$$
\sum_{j=0}^{(n-2) / 2}\binom{n}{j}(-1)^{j}(n-2 j)^{k}= \begin{cases}0, & \text { if } k<n \\ 2^{n-1} n!, & \text { if } k=n\end{cases}
$$

The conjectures were proven in 2009

Our Contribution

Hidefumi Katsuura proved these conjecture by establishing the following result:

Theorem

For complex numbers x and y and any positive integer n,

$$
\sum_{j=0}^{n}\binom{n}{j}(-1)^{j}(x j+y)^{k}= \begin{cases}0, & \text { if } 0 \leq k<n \\ (-x)^{n} \times n!, & \text { if } k=n .\end{cases}
$$

- We observe that the previous theorem is actually a special case of a much more general result.
- We will prove this general result and the Theorem above and the conjectures above follow directly.

Combinatorial Number $\binom{n}{k}$

Examples

- $\binom{n}{k}$ is the number of k-element subsets of a set S with $|S|=n$.
- Special values:

$$
\binom{n}{k}= \begin{cases}1, & \text { if } k=0 \text { or } n \\ n, & \text { if } k=1 \text { or } n-1 \\ 0, & \text { if } k<0 \text { or } k>n\end{cases}
$$

- In general, if $0 \leq k \leq n$,

$$
\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!} .
$$

For any $n \geq 1$,

$$
\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n}\binom{n}{n}=0 .
$$

Examples

$$
\begin{gathered}
0 \times\binom{ 2}{0}-1 \times\binom{ 2}{1}+2 \times\binom{ 2}{2}=0 \\
0 \times\binom{ 3}{0}-1 \times\binom{ 3}{1}+2 \times\binom{ 3}{2}-3 \times\binom{ 3}{3}=0
\end{gathered}
$$

For any $n \geq 2$,

$$
\begin{aligned}
0 \times\binom{ n}{0}-1 & \times\binom{ n}{1}+2 \times\binom{ n}{2}-\cdots+(-1)^{n} \times n \times\binom{ n}{n} \\
& =\sum_{k=0}^{n}(-1)^{k} \times k \times\binom{ n}{k}=0
\end{aligned}
$$

For any integer $0 \leq r<n$

-

$$
\sum_{k=0}^{n}(-1)^{k} \times k(k-1)(k-2) \cdots(k-r+1) \times\binom{ n}{k}=0
$$

- Let $(x)_{r}=x(x-1)(x-2) \cdots(x-r+1)$. Then

$$
\sum_{k=0}^{n}(-1)^{k} \times(k)_{r} \times\binom{ n}{k}=0
$$

holds for all $r=0,1,2, \cdots, n-1$.

For an arbitrary polynomial $P(x)$

If the degree of $P(x)$ is less then n, then $P(x)$ has a unique linear combination of $(x)_{0},(x)_{1}, \cdots,(x)_{n-1}$:
$P(x)=a_{0}(x)_{0}+a_{1}(x)_{1}+\cdots+a_{n-1}(x)_{n-1}=\sum_{r=0}^{n-1} a_{r}(x)_{r}$,
thus
$\sum_{k=0}^{n}(-1)^{k} \times P(k) \times\binom{ n}{k}=\sum_{r=0}^{n-1} a_{r} \sum_{k=0}^{n}(-1)^{k}(k)_{r}\binom{n}{k}=0$.

- The previous result: For any polynomial $P(x)$ of degree at most $n-1$,

$$
\sum_{k=0}^{n} P(k)(-1)^{k}\binom{n}{k}=0
$$

- Notice that $(1-z)^{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} z^{k}$.
- The result may be related to $(1-z)^{n}$ or $(z-1)^{n}$.

Extension

- Let $f(z)=c_{0}+c_{1} z+\cdots+c_{m} z^{m}$ be any polynomial over \mathbb{C} such that $(z-1)^{n}$ divides $f(z)$.
- For any polynomial $P(x)$ of degree at most $n-1$,

$$
\sum_{k=0}^{m} P(k) c_{k}=0
$$

Extension

- Let $f(z)=c_{0}+c_{1} z+\cdots+c_{m} z^{m}$ be any polynomial over \mathbb{C} such that $(z-1)^{n}$ divides $f(z)$.
- If $P(z)$ is a polynomial of degree n and leading coefficient c, then

$$
\sum_{i=0}^{m} P(k) c_{k}=c \sum_{i=n}^{m} c_{i}(i)_{n},
$$

in particular,

$$
\sum_{i=0}^{m} P(k)(-1)^{k}\binom{n}{k}=c(-1)^{n} n!
$$

Hidefumi Katsuura's result in 2009

Theorem

For complex numbers x and y and any positive integer n,

$$
\sum_{j=0}^{n}\binom{n}{j}(-1)^{j}(x j+y)^{r}= \begin{cases}0, & \text { if } 0 \leq r<n \\ (-x)^{n} \times n!, & \text { if } r=n .\end{cases}
$$

It follows from our result by choosing

$f(z)=(x z+y)^{r}$, a polynomial of degree r with leading coefficient x^{r}.

Application

Our result implies some special identities:

$$
\begin{gathered}
\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k}\left(k^{2}+a k+b\right)^{r}= \begin{cases}0, & \text { if } 0 \leq r<n \\
(2 n)!, & \text { if } r=n .\end{cases} \\
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{r}= \begin{cases}0, & \text { if } 0 \leq r<n \\
n!, & \text { if } r=n .\end{cases} \\
\quad \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{k}{r}= \begin{cases}0, & \text { if } 0 \leq r<n \\
(-1)^{n}, & \text { if } r=n .\end{cases}
\end{gathered}
$$

Thanks

Thanks for your attendance!

