An Identity via Arbitrary Polynomials

Dong Fengming¹, Ho Weng kin¹, Lee Tuo Yeong²

¹MME, NIE, Singapore ²NUS High School, Singapore

Paper

 Our paper was published in THE COLLEGE MATHEMATICS JOURNAL, VOL. 44, NO. 1, 2014.

A journal of THE MATHEMATICAL ASSOCIATION OF AMERICA

Dong Fengming (NTU)

MME Colloquium

Nov 2015

1 / 17

Dong Fengming (NTU)

MME Colloquium

₹ > 4 ₹ > 9

Nov 201

015 2/1

Started from two conjectures

The following conjectures were posed by Thomas Dence in a paper in CMJ in 2007.

Conjecture

Let n and k be odd positive integers with $k \leq n$. Then

$$\sum_{j=0}^{(n-1)/2} \binom{n}{j} (-1)^j (n-2j)^k = \begin{cases} 0, & \text{if } k < n; \\ 2^{n-1} n!, & \text{if } k = n. \end{cases}$$

Started from two conjectures

Conjecture

Let n and k be even positive integers with $k \leq n$. Then

$$\sum_{j=0}^{(n-2)/2} \binom{n}{j} (-1)^j (n-2j)^k = \left\{ \begin{array}{ll} 0, & \text{if } k < n; \\ 2^{n-1} n!, & \text{if } k = n. \end{array} \right.$$

4D > 4A > 4E > 4E > E 990

4 D > 4 A > 4 E > 4 E > 9 Q Q

Dong Fengming (NTU) MME Colloquium Nov 2015 3 / 17

Dong Fe

MME Colloquit

Nov 2015 4

The conjectures were proven in 2009

Hidefumi Katsuura proved these conjecture by establishing the following result:

Theorem

For complex numbers x and y and any positive integer n,

$$\sum_{j=0}^{n} \binom{n}{j} (-1)^{j} (xj+y)^{k} = \begin{cases} 0, & \text{if } 0 \le k < n \\ (-x)^{n} \times n!, & \text{if } k = n. \end{cases}$$

Our Contribution

• We observe that the previous theorem is actually a special case of a much more general result.

• We will prove this general result and the Theorem above and the conjectures above follow directly.

Dong Fengming (NTU)

MME Colloquium

Dong Fengming (NTU)

MME Colloquium

Combinatorial Number $\binom{n}{k}$

- $\binom{n}{k}$ is the number of k-element subsets of a set S with |S| = n.
- Special values:

$$\binom{n}{k} = \begin{cases} 1, & \text{if } k = 0 \text{ or } n; \\ n, & \text{if } k = 1 \text{ or } n - 1; \\ 0, & \text{if } k < 0 \text{ or } k > n. \end{cases}$$

• In general, if $0 \le k \le n$,

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$

Examples

$$\binom{1}{0} - \binom{1}{1} = 0.$$

$$\binom{2}{0} - \binom{2}{1} + \binom{2}{2} = 0.$$

$$\binom{3}{0} - \binom{3}{1} + \binom{3}{2} - \binom{3}{3} = 0.$$

For any $n \geq 1$,

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} = 0.$$

Examples

$$0 \times \binom{2}{0} - 1 \times \binom{2}{1} + 2 \times \binom{2}{2} = 0.$$

$$0 \times \binom{3}{0} - 1 \times \binom{3}{1} + 2 \times \binom{3}{2} - 3 \times \binom{3}{3} = 0.$$

For any $n \geq 2$,

$$0 \times {n \choose 0} - 1 \times {n \choose 1} + 2 \times {n \choose 2} - \dots + (-1)^n \times n \times {n \choose n}$$
$$= \sum_{k=0}^n (-1)^k \times k \times {n \choose k} = 0.$$

For an arbitrary polynomial P(x)

If the degree of P(x) is less then n, then P(x) has a unique linear combination of $(x)_0, (x)_1, \cdots, (x)_{n-1}$:

$$P(x) = a_0(x)_0 + a_1(x)_1 + \dots + a_{n-1}(x)_{n-1} = \sum_{r=0}^{n-1} a_r(x)_r,$$

thus

$$\sum_{k=0}^{n} (-1)^k \times P(k) \times \binom{n}{k} = \sum_{r=0}^{n-1} a_r \sum_{k=0}^{n} (-1)^k (k)_r \binom{n}{k} = 0.$$

For any integer $0 \le r < n$

$$\sum_{k=0}^{n} (-1)^{k} \times k(k-1)(k-2) \cdots (k-r+1) \times \binom{n}{k} = 0.$$

• Let $(x)_r = x(x-1)(x-2)\cdots(x-r+1)$. Then

$$\sum_{k=0}^{n} (-1)^k \times (k)_r \times \binom{n}{k} = 0$$

holds for all $r = 0, 1, 2, \dots, n - 1$.

Try to extend

• The previous result: For any polynomial P(x) of degree at most n-1,

$$\sum_{k=0}^{n} P(k)(-1)^{k} \binom{n}{k} = 0.$$

- Notice that $(1-z)^n = \sum_{k=0}^n (-1)^k \binom{n}{k} z^k$.
- The result may be related to $(1-z)^n$ or $(z-1)^n$.

Extension

- Let $f(z) = c_0 + c_1 z + \cdots + c_m z^m$ be any polynomial over \mathbb{C} such that $(z-1)^n$ divides f(z).
- For any polynomial P(x) of degree at most n-1,

$$\sum_{k=0}^{m} P(k)c_k = 0.$$

Dong Fengming (NTU)

MME Colloquium

Extension

- Let $f(z) = c_0 + c_1 z + \cdots + c_m z^m$ be any polynomial over \mathbb{C} such that $(z-1)^n$ divides f(z).
- If P(z) is a polynomial of degree n and leading coefficient *c*, then

$$\sum_{i=0}^{m} P(k)c_{k} = c \sum_{i=n}^{m} c_{i}(i)_{n},$$

in particular,

$$\sum_{k=0}^{m} P(k)(-1)^{k} \binom{n}{k} = c(-1)^{n} n!.$$

Dong Fengming (NTU)

MME Colloquium

Hidefumi Katsuura's result in 2009

Theorem

For complex numbers x and y and any positive integer n,

$$\sum_{j=0}^{n} \binom{n}{j} (-1)^{j} (xj+y)^{r} = \begin{cases} 0, & \text{if } 0 \le r < n \\ (-x)^{n} \times n!, & \text{if } r = n. \end{cases}$$

It follows from our result by choosing $f(z) = (xz + y)^r$, a polynomial of degree r with leading coefficient x^r .

Application

Our result implies some special identities:

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} (k^2 + ak + b)^r = \begin{cases} 0, & \text{if } 0 \le r < n \\ (2n)!, & \text{if } r = n. \end{cases}$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^r = \begin{cases} 0, & \text{if } 0 \le r < n \\ n!, & \text{if } r = n. \end{cases}$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{k}{r} = \begin{cases} 0, & \text{if } 0 \le r < n \\ (-1)^n, & \text{if } r = n. \end{cases}$$

Thanks

Dong Fengming (NTU)

Thanks for your attendance!

MME Colloquium

