▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Outline

An Introduction to DP color functions

Meiqiao Zhang

NIE, NTU

A joint work with Fengming Dong

1 March, 2023

• Proper coloring, list coloring and DP coloring

proper *m*-colorings, for each $m \in \mathbb{N}$.

• Research on DP color functions

◆□▶ ◆圖▶ ◆≧▶ ◆≧▶ ≧ めへで

	esearch on DP color functions	Proper coloring, list coloring and DP coloring $000000000000000000000000000000000000$	Research on DP color function
Notations		Proper coloring	
$\blacktriangleright G = (V(G), E(G)).$		A proper coloring: a mapping $c: V(G) \to \mathbb{N}$, such that $c(u) \neq c(v)$ for all $uv \in E(G)$.	
$\blacktriangleright G = (V(G), E(G)).$		A proper <i>m</i> -coloring: a proper coloring c with $c(u) \in [m]$ for all $u \in V(G)$.	
\blacktriangleright N: the set of positive integers.			
$\blacktriangleright \forall m \in \mathbb{N}, \text{ let } [m] := \{1, 2, \dots, m\}.$			
▶ Note: in this talk, m doesn't represent the number of edges.		Figure: Two proper 2-colorings of C_4	
		▶ The chromatic polynomial $P(G, m)$: the number of	

independently.

List coloring

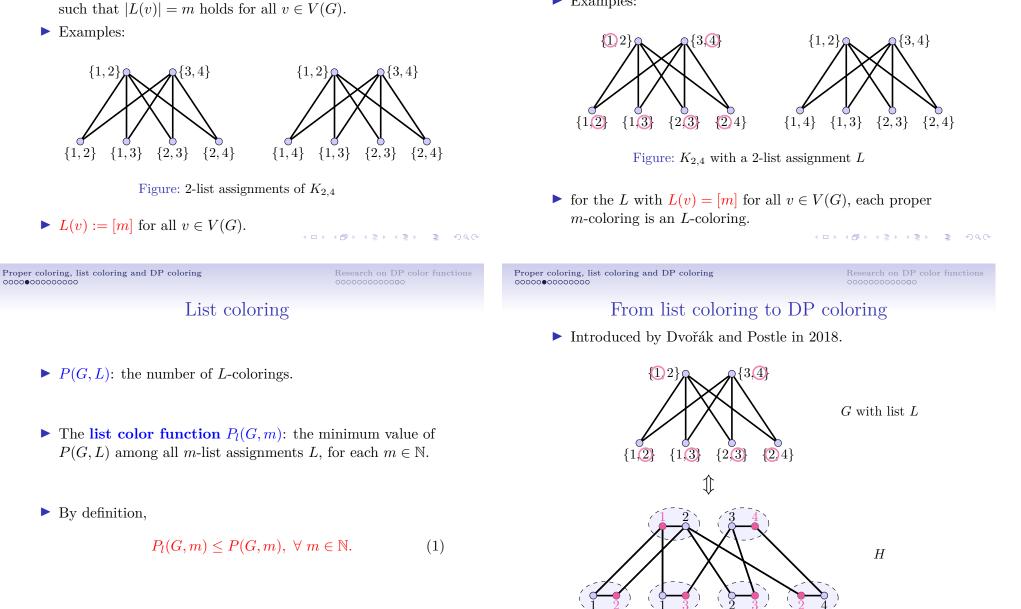
An *m*-list assignment L: a mapping L from V(G) to $2^{\mathbb{N}}$,

▶ Introduced by Vizing and Erdős, Rubin, Taylor

Proper coloring, list coloring and DP coloring 0000000000000000

List coloring

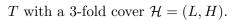
- An *L*-coloring: a proper coloring c with $c(v) \in L(v)$ for all $v \in V(G)$.
- ► Examples:



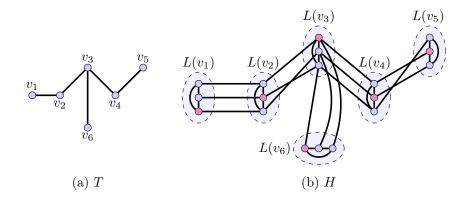
Research on DP color functions

Proper coloring, list coloring and DP coloring

DP coloring



- DP coloring
- ▶ $E_G(U, V) := \{uv \in E(G) : u \in U, v \in V\}.$
- ▶ An *m*-fold cover: an ordered pair $\mathcal{H} = (L, H)$, where *H* is a graph and *L* is a mapping from V(G) to $2^{V(H)}$ satisfying the conditions below:
 - for every $u \in V(G)$, L(u) is an *m*-clique in *H*,
 - the set $\{L(u) : u \in V(G)\}$ is a partition of V(H),
 - if $uv \notin E(G)$, then $E_H(L(u), L(v)) = \emptyset$, and
 - if $uv \in E(G)$, then $E_H(L(u), L(v))$ is a matching.



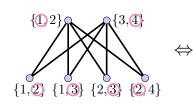
▶ an *H*-coloring: an independent set in *H* with size |V(G)|.

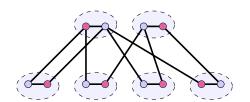
Research on DP color fu

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

DP coloring

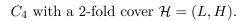
- For every *m*-list assignment L, there is a corresponding *m*-fold cover $\mathcal{H} = (L', H)$:
 - $V(H) = \bigcup_{u \in V(G)} L'(u),$
 - $L'(u) = \{(u, i) : i \in L(u)\}$ for every $u \in V(G)$, and
 - $(u,i)(v,j) \in E(H)$ iff u = v, or $uv \in E(G)$ and i = j.

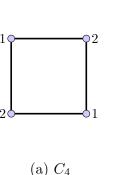


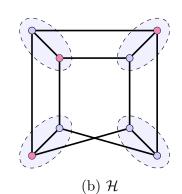


(a) an *L*-coloring

(b) an \mathcal{H} -coloring







Research on DP color functions

(2)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

Three color functions

 $P_{DP}(G,m) \le P_l(G,m) \le P(G,m), \ \forall \ m \in \mathbb{N}.$

Donner, 1992

 $P_l(G,m) = P(G,m)$ holds when m is sufficiently large.

Thomassen, 2009

 $P_l(G,m) = P(G,m)$ holds when $m > |V(G)|^{10}$.

Wang, Qian and Yan, 2017 $P_l(G,m) = P(G,m)$ holds when $m > \frac{|E(G)|}{\log(1+\sqrt{2})} \approx 1.135(|E(G)| - 1).$

・ ロ ト ・ 母 ト ・ 国 ト ・ 国 ・ の へ ()

▶ By definition,

graph.

Three color functions

DP coloring

▶ The **DP color function** $P_{DP}(G, m)$: the minimum value of $P(G, \mathcal{H})$ among all *m*-fold covers \mathcal{H} , for each $m \in \mathbb{N}$.

 $P_{DP}(G,m) < P_l(G,m) < P(G,m), \forall m \in \mathbb{N}.$

 \blacktriangleright Note that all the equalities in (2) hold when G is a chordal

 \blacktriangleright $P(G, \mathcal{H})$: the number of \mathcal{H} -colorings.

```
P_{DP}(G,m) \le P_l(G,m) \le P(G,m), \ \forall \ m \in \mathbb{N}.
```

F.M. Dong and M.Q. Zhang, 2023 $P_l(G,m) = P(G,m)$ holds whenever $m \ge |E(G)| - 1$.

 However, the DP color functions of some graphs might not tend to be the same as their chromatic polynomials.

Kaul and Mudrock, 2019

If the girth of G is even, then there exists $M \in \mathbb{N}$, such that $P_{DP}(G,m) < P(G,m)$ for all integers $m \ge M$.

Proper coloring, list coloring and DP coloring

Research on DP color function

Between $P_{DP}(G, m)$ and P(G, m)

- ► Therefore, two sets of graphs DP_< and DP_≈ are naturally defined.
 - $DP_{<}$: the set of graphs G for which there is $M \in \mathbb{N}$ such that $P_{DP}(G,m) < P(G,m)$ holds for all integers $m \geq M$, and
 - DP_{\approx} : the set of graphs G for which there is $M \in \mathbb{N}$ such that $P_{DP}(G,m) = P(G,m)$ holds for all integers $m \geq M$.
- ▶ Note: a characterization of the graphs in set $DP_{<}$ or DP_{\approx} does not necessarily guarantee a characterization of the graphs in the other set.

G containing e.

Research on DP color functions

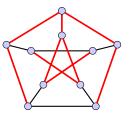
Proper coloring, list coloring and DP colorin;

Known results on DP_{\approx}

▶ On the other hand, Mudrock and Thomason first showed that each graph with a dominating vertex belongs to DP_{\approx} .

Dong and Yang, 2022

Graph G belongs to DP_{\approx} if G has a spanning tree T such that for each edge e in $E(G) \setminus E(T)$, $\ell_G(e)$ is odd and there exists a cycle $C \in \mathcal{C}_G(e)$, where $\ell_G(e') < \ell_G(e)$ holds for each $e' \in E(C) \setminus (E(T) \cup \{e\}).$



Proper coloring, list coloring and DP coloring

Research on DP color functions

Our results on DP_{\approx}

M.Q. Zhang and F.M. Dong, 2023

Let G be a graph with vertex set $\{v_i : i = 0, 1, ..., n\}$, where $n \ge 1$. If for each $i \in [n]$, the set $N(v_i) \cap \{v_j : 0 \le j \le i - 1\}$ is not empty and the subgraph of G induced by this vertex set is connected, then G is in DP_{\approx} .

▶ Immediately, many special classes of graphs belong to DP_{\approx} , such as complete *k*-partite graphs with $k \geq 3$ and plane near-triangulations.

Dong and Yang, 2022

• ∞ if $\mathcal{C}_G(e) = \emptyset$;

Graph G belongs to $DP_{<}$ if G contains an edge whose girth is even.

• the size of any cycle in $\mathcal{C}_{G}(e)$ otherwise.

Known results on $DP_{<}$

For any $e \in E(G)$, let $\mathcal{C}_{G}(e)$ be the set of shortest cycles in

The girth of edge e, denoted by $\ell_G(e)$:

Proper coloring, list coloring and DP coloring

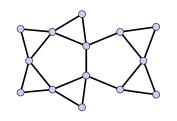
Research on DP color functions

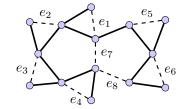
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

Our results on DP_{\approx}

M.Q. Zhang and F.M. Dong, 2023

Graph G belongs to DP_{\approx} if G has a spanning tree T and a labeling e_1, \ldots, e_q of all the edges in $E(G) \setminus E(T)$, such that $\ell_G(e_1) \leq \cdots \leq \ell_G(e_q)$ and for each $i \in [q], \ell_G(e_i)$ is odd and $E(C_{e_i}) \subseteq E(T) \cup \{e_1, \ldots, e_i\}$ holds for some $C_{e_i} \in \mathcal{C}_G(e_i)$.



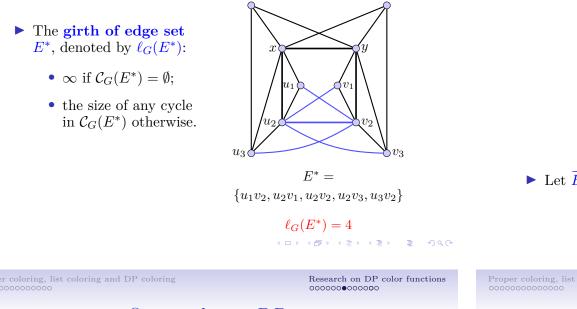


(a) G

Proper coloring, list coloring and DP colorir 00000000000000

Our results on $DP_{<}$

▶ For any $E^* \subseteq E(G)$, let $\mathcal{C}_G(E^*)$ be the set of shortest cycles C in G such that $|E(C) \cap E^*|$ is odd.



Our results on $DP_{<}$

For any cycle C, we say the directed edges in *E*^{*} are balanced on C if |E(C) ∩ E^{*}| is even, and exactly half of the edges in E(C) ∩ E^{*} are oriented clockwise along C.

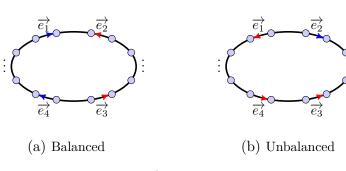


Figure:
$$\overrightarrow{E^*} = \{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}, \overrightarrow{e_4}\}$$

Our results on $DP_{<}$

For any $E^* \subseteq E(G)$, assume that each e in E^* is assigned a direction \overrightarrow{e} and only edges in E^* are assigned directions.



• Let $\overrightarrow{E^*}$ be the set of directed edges \overrightarrow{e} for all $e \in E^*$.

 $\Rightarrow \ \overrightarrow{E^*} = \{ \overrightarrow{u_1v_2}, \overrightarrow{u_2v_1}, \overrightarrow{u_2v_2}, \overrightarrow{u_2v_3}, \overrightarrow{u_3v_2} \}.$

oper coloring, list coloring and DP colori

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - わへで

Our results on $DP_{<}$

M.Q. Zhang and F.M. Dong, 2023

Let G be a connected graph and E^\ast be a set of edges in G. Assume that

1. $\ell_G(E^*)$ is even; and

2. there exists a way to assign a direction \overrightarrow{e} for each edge $e \in E^*$ such that the directed edges in $\overrightarrow{E^*} = \{\overrightarrow{e} : e \in E^*\}$ are balanced on each cycle C of G with $|E(C)| < \ell_G(E^*)$.

Then $P(G,m) - P_{DP}(G,m) \ge \Omega(m^{|V(G)| - \ell_G(E^*) + 1})$ holds, and hence $G \in DP_{\le}$.

Proper coloring, list coloring and DP colorin

Mathematics **123** (2021), article 103121.

Our results on $DP_{<}$ Our results on $DP_{<}$ $\ell_G(E^*) = 4$ $\ell_G(E^*) = 6$ M.Q. Zhang and F.M. Dong, 2023 Let G be any graph and let $E^* \subseteq E_G(V_1, V_2)$, where V_1 and V_2 are disjoint vertex subsets of V(G). If $\ell_G(E^*) = 4$, then $P(G,m) - P_{DP}(G,m) \ge \Omega(m^{n-3})$ holds, and hence $G \in DP_{\le}$. ▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで Research on DP color functions Research on DP color functions 000000000000000 **Future Research References** I F.M. Dong and Y. Yang, DP color functions versus chromatic Question polynomials, Advances in Applied Mathematics 134 (2022), article 102301. How to characterize the graphs in sets DP_{\leq} and DP_{\approx} ? F.M. Dong and M.Q. Zhang, A lower bound of P(G, L) - P(G, k)for any k-assignment L, J. Combin. Theory Ser. B (2023), https://doi.org/10.1016/j.jctb.2023.02.002. Question Q. Donner, On the number of list-colorings, J. Graph Theory 16 What is the property of an *m*-fold cover \mathcal{H} of *G* with (1992) 239–245. $P(G, \mathcal{H}) = P_{DP}(G, m)?$ Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Comb. Theory, Ser. B 129 (2018), 38-54. Question H. Kaul and J.A. Mudrock, On the chromatic polynomial and counting DP-colorings of graphs, Advances in Applied Is there any graph not in $DP_{\leq} \cup DP_{\approx}$?

Research on DP color functions

References II

- J.A. Mudrock and S. Thomason, Answers to two questions on the DP color function, *Electron. J. Comb.* **28**(2) (2021), #P2.24.
- C. Thomassen, The chromatic polynomial and list colorings, Journal of Combinatorial Theory Series B 99 (2009), 474–479.
- W. Wang, J. Qian and Z. Yan, When does the list-coloring function of a graph equal its chromatic polynomial, *J. Comb. Theory, Ser. B* **122** (2017) 543–549.
- M.Q. Zhang and F.M. Dong, DP color functions versus chromatic polynomials (II), J. Graph Theory (2023), 1-22. https://doi.org/10.1002/jgt.22944.

