Outline

Study on tiered trees

Dong Fengming

Nanyang Technological University Singapore

Talk at MME
8 Mar 2023

Article

The main results in this talk is from the following article:

Fengming Dong and Sherry H.F. Yan, Proving identities on weight polynomials of tiered trees via Tutte polynomials,
J. Combin. Theory Ser. A 193 (2023), 105689.
https://doi.org/10.1016/j.jcta.2022.105689Counting problemsWeight $w(T)$ of a tiered tree TProblem on the weight polynomial $P_{\mathbf{p}}(y)$Equivalent problem on Tutte polynomial

Approach of solving the problem
(6)

Main idea

Tiered graphs

Rules for tiered graphs:
(a) Vertices are denoted by positive integers and located in tiers;
(b) Vertices in the same tier form an independent set; and
(c) If $u v \in E$ and $u>v$, then u is in a higher tier than v.

A resident building

Each tiered graph has a tiering map t

A tiered graph $G=(V, E)$ with $m \geq 2$ tiers is a simple graph with $V \subseteq \llbracket n \rrbracket=\{1,2, \cdots, n\}$, and with a surjective map t from V to $\llbracket m \rrbracket$ such that if $v v^{\prime} \in E$, then $v>v^{\prime}$ implies $t(v)>t\left(v^{\prime}\right)$.

For this example

i	1	2	3	4	5	6
$t(i)$	2	1	3	3	2	3

t is called a tiering map, which decides the tier in which each vertex i in G is located.

Tiered trees

Connection to other combinatorial objects

- If a tiered graph is a tree, it is called a tiered tree.
- The concept of tiered trees was introduced by Dugan et al. in 2019 who generalized the concept alternating trees introduced by Postnikov in 1997.
- A tree is called an alternating tree if for each path $x_{1} x_{2} \ldots x_{k}$, either

$$
x_{1}<x_{2}>x_{3}<x_{4}>x_{5} \ldots
$$

or

$$
x_{1}>x_{2}<x_{3}>x_{4}<x_{5} \ldots
$$

- Any path in a tiered graph with 2 tiers is an alternating path.
- the regions of the Linial hyperplane arrangement (the affine arrangement in \mathcal{R}^{n} defined by the equations $x_{i}-x_{j}=1,1 \leq i<j \leq n$);
- local binary search trees (labeled plane binary trees with the property that every left child has a smaller label than its parent and every right child has a larger label than its parent);
- semiacyclic tournaments (directed graphs on the set $\{1, \ldots, n\}$ such that in every directed cycle, there are more edges (i, j) with $i<j$ than with $i>j$).

Complete tiered graphs

Complete tiered graphs

A tiered graph G with a tiering map t is complete if

$$
u<v, t(u)<t(v) \Rightarrow u v \in E(G) .
$$

(a) not complete

(b) complete

(a) Tiered tree T

(b) Tiered graph $G=K_{T}$

Note that the tiered graph G is determined by T, denoted by K_{T}. K_{T} is the completed tiered graph obtained from T by adding some new edges.

Counting Tiered trees

- Two tiered graphs G_{1} and G_{2} are different if either $E\left(G_{1}\right) \neq E\left(G_{2}\right)$ or G_{1} and G_{2} have different tiering functions.

Counting problems

- Let $\mathcal{T}_{n, m}$ be the set of tiered trees with n vertices and m tiers.
- Postnikov (1997): $\left|\mathcal{T}_{n, 2}\right|=\frac{1}{n 2^{n-1}} \sum_{k \geq 1}\binom{n}{k} k^{n-1}$.
- Dugan et al. (2019):

$$
\left|\mathcal{T}_{n, m}\right|=\frac{1}{n m^{n-1}} \sum_{\substack{k_{i} \geq 0 \\ k_{1}+\cdots+k_{m}=n}}\binom{n}{k_{1}, \cdots, k_{m}}\left(\sum_{i=1}^{m}(m-i) k_{i}\right)^{n-1} .
$$

The set \mathcal{T}_{p} of tiered trees

Open problems

Problem:

Given a partition $\mathbf{p}=\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ of n, find an expression for $\left|\mathcal{T}_{\mathbf{p}}\right|$ in terms of $p_{1}, p_{2}, \cdots, p_{m}$.

Special case:

Problem:

Given any partition $\mathbf{p}=\left(p_{1}, p_{2}\right)$ of n, determine $\left|\mathcal{T}_{\mathbf{p}}\right|$ in terms of p_{1} and p_{2}.

$\mathcal{T}_{\mathfrak{p}}$ and $\mathcal{T}_{\pi(\mathfrak{p})}$ have the same size

- Sherry H.F. Yan, Danna Yan, Hao Zhou (DM, 2020):

For any ordered partition $\mathbf{p}=\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ of $n,\left|\mathcal{T}_{\mathbf{p}}\right|=\left|\mathcal{T}_{\pi(\mathbf{p})}\right|$ holds for any permutation of π of $1,2, \cdots, m$, where

Weight $w(T)$ of a tiered tree T

- For example, $\left|\mathcal{T}_{(1,2,3)}\right|=\left|\mathcal{T}_{(3,2,1)}\right|$.
- In other words, for any partition $\mathbf{p}=\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ of n, $\left|\mathcal{T}_{\mathbf{p}}\right|$ is independent of the order of $p_{1}, p_{2}, \cdots, p_{m}$.

More details than $\left|\mathcal{T}_{\mathrm{p}}\right|=\left|\mathcal{T}_{\pi(\mathfrak{p})}\right| \quad$ Example

$w(T)$: the weight of a tiered tree T.
We shall prove that
For any partition $\mathbf{p} \vdash n$, permutation π, and $i=0,1,2, \ldots$,

$$
\left|\left\{T \in \mathcal{T}_{\mathbf{p}}: w(T)=i\right\}\right|=\left|\left\{T \in \mathcal{T}_{\pi(\mathbf{p})}: w(T)=i\right\}\right| .
$$

Equivalently, it is to prove the following identity:

$$
\sum_{T \in \mathcal{T}_{\mathbf{p}}} y^{w(T)}=\sum_{T \in \mathcal{T}_{\pi(\mathbf{p})}} y^{w(T)}
$$

Externally active edges

$G:$ a connected graph with a weight function μ on $E(G)$, which is a real and injective function.
μ provides an order for edges in G.
T is a spanning tree of G.
For any edge $e \in E(G) \backslash E(T), T+e$ has a unique cycle, denoted by $C_{T}(e)$, with respect to T.
For $e \in E(G), e$ is said to be externally active in G with respect to T, if $e \notin E(T)$ and

$$
\mu(e) \leq \mu\left(e^{\prime}\right), \quad \forall e^{\prime} \in E\left(C_{T}(e)\right) .
$$

Assume that
$\mathcal{T}_{(a, b, c)}$ has 40 tiered trees

$w(T)$	0	1	2	≥ 3
No. T	10	12	18	0

Equivalently,

$$
\sum_{T \in \mathcal{T}_{\mathbf{p}}} y^{w(T)}=10+12 y+18 y^{2}=\sum_{T \in \mathcal{T}_{\pi(\mathbf{p})}} y^{w(T)}
$$

How is the weight $w(T)$ defined?

The external activity $e a_{G}(T)$ for a spanning tree T

External activity of T in G, denoted by ea ${ }_{G}(T)$: the number of externally active edges in G with respect to T.
$e a(T)=1$ for the above example, since edge $v_{5} v_{6}$ with weight 1 is the only externally active edge in G with respect to T.

Weight function μ for tiered graphs

For each tiered graph G, the edges in G are ordered lexicographically by their endpoints.

(a) Tiered tree T

(b) Tiered graph $G=K_{T}$

Thus, for the above tiered graph G,

$$
\mu(1,3)<\mu(1,4)<\mu(1,6)<\mu(2,3)<\mu(2,5)<\mu(2,6)<\mu(5,6)
$$

Equivalent conditions

(1) $i<v$ for each $v \in V(P) \backslash\{i\} ;$
(2) $|V(P)| \geq 3$;
(3) $t(j)>t(i)$; and
(4) $k>j$, where k is the neighbor of i on path P.

The following statements are equivalent:
(a) path P satisfies conditions (1)-(4) above;
(b) $\mu(i, j) \leq \mu(u, v)$ for each edge (u, v) on P;
(c) edge (i, j) is externally active in K_{T} with respect T.

The weight $w(T)$ of a tiered tree T

Let T be a tiered tree with tiering map t. The weight $w(T)$ is the number of $i-j$ paths P in T such that

(1) $i<v$ for each $v \in V(P) \backslash\{i\} ;$
(2) $|V(P)| \geq 3 ;$
(3) $t(j)>t(i)$; and
(4) $k>j$, where k is the neighbor of i on path P.

$$
w(T)=e a_{K_{T}}(T)
$$

For a tiered tree $T, w(T)$ is equal to the external activity of T in K_{T} :

$$
w(T)=e a_{K_{T}}(T)
$$

For the following tiered tree $T, w(T)=e a_{K_{T}}(T)=1$.

(a) T

(b) K_{T}

Weight $w(T)$ for $T \in \mathcal{T}_{(2,2)}$

Determine the weight $w(T)$ for each tree T in $\mathcal{T}_{(2,2)}$:

(a)

(b)

(c)

Problem on the weight polynomial $P_{\mathbf{p}}(y)$

$w(T)=1$ for only one tree T above, $w(T)=0$ for all other trees.
$w(T)=1$ for which tree T ?
$w(T)=1$ for the tree T on the bottom of (a).

The weight polynomial $P_{\mathrm{p}}(y)$

- For any ordered partition $\mathbf{p}=\left(p_{1}, \cdots, p_{m}\right)$ of n, the weight polynomial for trees in \mathcal{T}_{p} is defined as

$$
P_{\mathbf{p}}(y)=\sum_{T \in \mathcal{T}_{\mathbf{p}}} y^{w(T)}
$$

- Since $w(T)=e a_{K_{T}}(T)$,

$$
P_{\mathbf{p}}(y)=\sum_{T \in \mathcal{T}_{\mathbf{p}}} y^{e a_{K_{T}}(T)}
$$

- For example, if $\mathbf{p}=(2,2)$, then $P_{\mathbf{p}}(y)=y+4$.

Problem asked by Dugan et al

Problem

Is there an elementary proof of the identity below for any partition $\mathbf{p}=\left(p_{1}, \cdots, p_{m}\right)$ and any permutation π of $1,2, \cdots, m$,

$$
P_{\mathbf{p}}(y)=P_{\pi(\mathbf{p})}(y)
$$

i.e.,

$$
\sum_{T \in \mathcal{T}_{\mathbf{p}}} y^{w(T)}=\sum_{T \in \mathcal{T}_{\pi(\mathbf{p})}} y^{w(T)} ?
$$

For example, proving the following identity:

$$
P_{(1,2,3,4,5)}(y)=P_{(5,4,3,2,1)}(y)
$$

Transferred to Tutte polynomial

- For any ordered partition $\mathbf{p}=\left(p_{1}, \cdots, p_{m}\right)$ of n.
- Let $\mathcal{C G}_{\mathbf{p}}$ be the set of completed tiered graphs G with tiering map t such that $t^{-1}(i)=p_{i}$ for $i=1, \cdots, m$.
- Let $\mathcal{C G}_{\mathbf{p}}^{c}$ be the set of connected graphs in $\mathcal{C} \mathcal{G}_{\mathrm{p}}$.
- The weight polynomial can be transferred to

$$
P_{\mathbf{p}}(y)=\sum_{T \in \mathcal{T}_{\mathbf{p}}} y^{w(T)}=\sum_{G \in \mathcal{C} \mathcal{G}_{\mathbf{p}}^{c}} \mathbf{T}_{G}(1, y),
$$

where $\mathbf{T}_{G}(x, y)$ is the Tutte polynomial of G :

$$
\mathbf{T}_{G}(x, y)=\sum_{T \in \mathcal{S} \mathcal{T}_{G}} x^{i a(T)} y^{e a(T)} .
$$

Equivalent problem on Tutte polynomial

Tutte polynomial $\mathrm{T}_{G}(x, y)$

It is named after William Tutte (1917-2002).
Let $G=(V, E)$ be a undirected graph.
For any $A \subseteq E$, let $k(A)$ denote the number of components of the spanning subgraph (V, A).
The Tutte polynomial of G is defined as

$$
\begin{aligned}
\mathbf{T}_{G}(x, y) & :=\sum_{A \subseteq E}(x-1)^{k(A)-k(E)}(y-1)^{k(A)+|A|-|E|} \\
& =\sum_{T \in \mathcal{S} \mathcal{T}_{G}} x^{i a(T)} y^{e a(T)},
\end{aligned}
$$

where $i a(T)$ is the internal activity of T.

Transfer of the problem

For any partition $\mathbf{p}=\left(p_{1}, \cdots, p_{m}\right)$ and any permutation π of $1,2, \cdots, m$,

$$
P_{\mathbf{p}}(x)=P_{\pi(\mathbf{p})}(x)
$$

π
For any partition $\mathbf{p}=\left(p_{1}, \cdots, p_{m}\right)$ and any permutation π of $1,2, \cdots, m$,

$$
\sum_{G \in \mathcal{C} \mathcal{G}_{\mathbf{p}}^{c}} \mathbf{T}_{G}(1, y)=\sum_{G \in \mathcal{C} \mathcal{G}_{\pi(\mathfrak{p})}^{c}} \mathbf{T}_{G}(1, y),
$$

where $\mathcal{C G}_{\mathbf{p}}^{c}$ is the set of connected complete tiered graphs with tier partition \mathbf{p}.

Approach

Six graphs in the set $\mathcal{C} \mathcal{G}_{(1,2,1)}^{c}$

- Sufficient to prove
for any permutation π of $1,2, \cdots$, m which exchanges i and $i+1$ only, where $1 \leq i<m$:

$$
\sum_{G \in \mathcal{C} \mathcal{G}_{\mathbf{p}}^{c}} \mathbf{T}_{G}(1, y)=\sum_{G \in \mathcal{C} \mathcal{G}_{\pi(\mathbf{p})}^{c}} \mathbf{T}_{G}(1, y)
$$

- The total number of spanning trees of graphs in the set $\mathcal{C} \mathcal{G}_{\mathrm{p}}^{c}$ is equal to the number of total number of spanning trees of graphs in $\mathcal{C} \mathcal{G}_{\pi(\mathbf{p})}^{c}$.
But $\left|\mathcal{C} \mathcal{G}_{\mathrm{p}}^{c}\right| \neq\left|\mathcal{C} \mathcal{G}_{\pi(\mathbf{p})}^{c}\right|$ for some p, e.g., $\left|\mathcal{C G}_{(1,2,1)}^{c}\right|>\left|\mathcal{C} \mathcal{G}_{(2,1,1)}^{c}\right|$.

Study on tiered trees
Dong FM (NTU)
$\mathbf{T}_{G}(1, y)$ for $G \in \mathcal{C} \mathcal{G}_{(1,2,1)}^{c}$

Five graphs in the set $\mathcal{C} \mathcal{G}_{(2,1,1)}^{c}$

$\mathbf{T}_{G}(1, y)$ for $G \in \mathcal{C} \mathcal{G}_{(2,1,1)}^{c}$

Approach of solving the problem

Union of graphs: $H \cup Q$

- Let H be a multiple graph and Q be a tiered graph, with the possibility that $V(H) \cap V(Q) \neq \varnothing$.
- $H \cup Q$ is defined to be the multi-graph with vertex set $V(H) \cup V(Q)$ and edge set $E(H) \cup E(Q)$,
where any edges $e_{1} \in E(H)$ and $e_{2} \in E(Q)$ are two different edges in $H \cup Q$ even if e_{1} and e_{2} join the same pair of vertices.
- Thus, $|E(H \cup Q)|=|E(H)|+|E(Q)|$.

Examples of graphs $H \cup Q$

H

Q_{1}
$H \cup Q_{1}$

Q_{2}

$H \cup Q_{2}$

The set of graphs in $\mathcal{C G}_{U, p}^{c}(H)$

H and graphs in $\mathcal{C} \mathcal{G}_{\{1,2,3,4\},(3,1)}$

- Let U be any subset of $\llbracket n \rrbracket, \mathbf{p}=\left(p_{1}, p_{2}\right)$ and $\mathbf{p}^{\prime}=\left(p_{2}, p_{1}\right)$, where $p_{1}+p_{2}=|U|$.
- Let $\mathcal{C} \mathcal{G}_{U, \mathrm{p}}$ be the set of complete tiered graphs Q with tiering map $t: U \rightarrow\{1,2\}$ such that $t^{-1}(i)=p_{i}$ for $i=1,2$.
- Given any graph H, let $\mathcal{C G}_{U, \mathbf{p}}^{c}(H)$ be the set of connected graphs $H \cup Q$, where $Q \in \mathcal{C} \mathcal{G}_{u, p}$.

H

Fours graphs in $\mathcal{C G}_{\{1,2,3,4\},(3,1)}$

Only two graphs in $\mathrm{CG}_{\{1,2,3,4)(3,1)}^{c}(H)$

$\mathbf{T}_{G}(1, y)=y^{2}+3 y+3$

$\mathbf{T}_{G}(1, y)=y+3$

disconnected

disconnected

Dong FM (NTU)
Study on tiered trees

Three graphs in $\mathcal{C G}_{(1,2,341 /(1,3)}^{c}(H)$

$$
\mathbf{T}_{G}(1, y)=y^{2}+3 y+4 \quad \mathbf{T}_{G}(1, y)=y+1
$$

An extension

$U \subseteq \llbracket n \rrbracket, \mathbf{p}=\left(p_{1}, p_{2}\right)$ and $\mathbf{p}^{\prime}=\left(p_{2}, p_{1}\right)$, where $p_{1}+p_{2}=|U|$.
Dong and Yan (2022):
For any multi-graph H ,

$$
\sum_{G \in \mathcal{C} \mathcal{G}_{U, \mathbf{p}}^{c}(H)} \mathbf{T}_{G}(1, y)=\sum_{G \in \mathcal{C} \mathcal{G}_{U, \mathbf{p}^{\prime}}^{c}(H)} \mathbf{T}_{G}(1, y)
$$

Main idea

It implies that

For any ordered partition $\mathbf{p}=\left(p_{1}, \cdots, p_{m}\right)$ and any permutation π of $1,2, \cdots$, m exchanging i and j only, where $1 \leq i<j \leq m$:

$$
\sum_{G \in \mathcal{C} \mathcal{G}_{\mathbf{p}}^{c}} \mathbf{T}_{G}(1, y)=\sum_{G \in \mathcal{C} \mathcal{G}_{\pi(\mathbf{p})}^{c}} \mathbf{T}_{G}(1, y)
$$

The dual graph of a 2-tier graph

T

its dual graph T^{\prime}
G is a connected tiered graph with vertices $x_{1}, x_{2}, \cdots, x_{s}$, where $x_{1}<x_{2}<\cdots<x_{s}$, and a tiering map $t: V(G) \rightarrow\{1,2\}$.
The dual graph of G, denoted by G^{\prime}, has vertex set $V(G)$, tiering $\operatorname{map} t^{\prime}: V\left(G^{\prime}\right) \rightarrow\{1,2\}$ with $t^{\prime}\left(x_{r}\right)=3-t\left(x_{s+1-r}\right)$ for all $r=1,2, \cdots, s$, and edge set
$\left\{x_{i} x_{j}: x_{s+1-i} x_{s+1-j} \in E(G), 1 \leq i<j \leq s\right\}$.

The dual graph of a tiered graph

If G is a tiered graph with components $G_{1}, G_{2}, \ldots, G_{k}$, then the dual graph of G is defined to be the tiered graph with components $G_{1}^{\prime}, G_{2}^{\prime}, \cdots, G_{k}^{\prime}$.

G

For a 2-tier graph $G, G^{\prime} \cong G$ and $V\left(G_{i}\right)=V\left(G_{i}^{\prime}\right)$ for each component G_{i} of G,
but it is not true that G is complete if and only if G^{\prime} is.

Correspondence of spanning trees

Example

For any graph W and 2-tier forest $F, W \cup F$ is a tree if and only ${ }_{i f} W \cup F^{\prime}$ is a tree.

F
$W \cup F$
$W \cup F^{\prime}$

Thus,
$W \cup F \Rightarrow W \cup F^{\prime}$ is a bijection from
$\bigcup_{G \in \mathcal{C G}_{U,\left(p_{1}, p_{2}\right)}^{c}(H)} \mathcal{S T} \mathcal{T}_{G} \quad$ to $\bigcup_{G \in \mathcal{C G}_{U,\left(p_{2}, p_{1}\right)}^{c}(H)} \mathcal{S} \mathcal{T}_{G}$

Different weight functions μ_{1} and μ_{2}

Conclusion after confirming μ_{1} and μ_{2}

Next target: To find weight functions μ_{1} on
$E(H) \cup \underset{G \in \mathcal{C} \mathcal{G}_{\mathcal{U},\left(p_{1}, p_{2}\right)}}{ } E(G)$ and μ_{2} on $E(H) \cup \underset{G \in \mathcal{C G} \mathcal{G}_{u,\left(p_{2}, p_{1}\right)}}{ } E(G)$
such that for any tree $W \cup F$, where $W \subseteq H, F \subseteq G$, and $G \in \mathcal{C} \mathcal{G}_{U,\left(p_{2}, p_{1}\right)}$,
the external activity of $W \cup F$ in $H \cup G$ with respect to μ_{1} =
the external activity of $W \cup F^{\prime}$ in $H \cup K_{F^{\prime}}$ with respect to μ_{2}.
Note that $K_{F^{\prime}}$ may be different from the dual G^{\prime} of G.

Note that

$$
\sum_{G \in \mathcal{C G}}^{\mathcal{U}_{u,\left(p_{1}, p_{2}\right)}(H)} \mathbf{T}_{G}(1, y)=\sum_{G \in \mathcal{C} \mathcal{G}_{U,\left(p_{1}, p_{2}\right)}} \sum_{T H} y^{e \mathcal{S}_{G}} y^{e a_{\mu_{1}}(T)}
$$

and

$$
\sum_{G \in \mathcal{C G}}^{\mathcal{G}_{1,\left(p_{2}, p_{1}\right)}} \mathbf{T}_{G}(1, y)=\sum_{G \in \mathcal{C} \mathcal{G}_{U,\left(p_{2}, p_{1}\right)}^{c}(H)} \sum_{T \in \mathcal{S} \mathcal{T}_{G}} y^{e a_{\mu_{2}}(T)} .
$$

As μ_{1} and μ_{2} have the above property,

$$
\sum_{G \in \mathcal{C G} \mathcal{G}_{U,\left(p_{1}, p_{2}\right)}^{c}(H)} \mathbf{T}_{G}(1, y)=\sum_{G \in \mathcal{C} \mathcal{G}_{U,\left(p_{2}, p_{1}\right)}^{c}(H)} \mathbf{T}_{G}(1, y)
$$

The main result then follows.

References

Thanks for your attendance

- Fengming Dong and Sherry H.F. Yan, Proving identities on weight polynomials of tiered trees via Tutte polynomials, JCTA 193 (Jan 2023), 105689.
- Sherry H.F. Yan, Danna Yan, Hao Zhou, A bijective enumeration of tiered trees, Discrete Math. 343 (2020), 111983.
- William Dugan, Sam Glennon, Paul E. Gunnells, and Einar Steingrímsson. Tiered trees, weights, and q-Eulerian numbers. JCTA 164 (2019), 24-49.
- Alexander Postnikov. Intransitive trees. JCTA 79(1997), 360-366.

