List-coloring functions versus chromatic polynomials

Dong Fengming

Nanyang Technological University

Singapore

MME
15 March 2023

Articles

Fengming Dong and Meiqiao Zhang, An improved lower bound of $P(G, L)-P(G, k)$ for k-assignments L. J. Combin. Theory Ser. B 161 (2023), 109-119.
http:/ /doi.org/10.1016/j.jctb.2023.02.002
Fengming Dong and Meiqiao Zhang, Compare the list-color function of a hypergraph with its chromatic polynomial. http:/ /arxiv.org/abs/2212.02045

Meiqiao Zhang and Fengming Dong, Compare list-color functions of hypergraphs with their chromatic polynomials (II). http:/ /arxiv.org/abs/2302.05067

Outline

(1)

Chromatic polynomials
List-coloring function $P_{l}(G, k)$
When does $P_{l}(G, k)=P(G, k)$ hold?Expressions for $P(G, k)$ and $P(G, L)$
(5)

Lower bound of $P(G, L)-P(G, k)$
(6)

Vertex-coloring in hypergraphs \mathcal{H}
(7)

Analogous conclusion on hypergraphs \mathcal{H}

Chromatic polynomials

Proper coloring

$P(G, k)$: Counting k-colourings

- For a positive integer k, a (proper) k-coloring of a graph G is a way of assigning k colors to vertices in G, one color for each vertex, such that any two adjacent vertices are assigned different colours.

Chromatic number $\chi(G)$ is the minimum k such that G admits a proper k coloring.

Brooks Theorem

For any connected graph G, if G is not complete nor an odd cycle, then $\chi(G) \leq \Delta(G)$.
$P(G, k)$: the number of ways of assigning one color in $\left\{c_{1}, \cdots, c_{k}\right\}$ to each vertex of G such that any two adjacent vertices are colored differently.

- Examples for $P(G, k)$:

$k(k-1)(k-2)$

$k(k-1)^{2}$

$(k-1)^{4}+(k-1)$
- $P(G, k)$ is a polynomial in k of degree $|V(G)|$.
- $P\left(K_{n}, k\right)=k(k-1) \cdots(k-n+1)$ and $P\left(N_{n}, k\right)=k^{n}$.

Chromatic polynomial

$P(G, k)$ is called the chromatic polynomial of G.

It was introduced by Birkhoff in 1912 with the hope of proving 4CC.

List-coloring function $P_{l}(G, k)$

George David Birkhoff (1884-1944) was one of the most important leaders in American mathematics in his generation.

List-coloring: a generalization of vertex-coloring

$P(G, L)$: the number of L-colorings

- Introduced independently by Vizing in 1976 and Erdős, Rubin and Taylor in 1979.
- List assignment of G : a mapping L from $V(G)$ to $2^{\mathbb{N}}$.
- For a list assignment L, a proper L-coloring of G is a mapping $f: V(G) \rightarrow \mathbb{N}$ such that $f(v) \in L(v)$ for each $v \in V(G)$ and $f(u) \neq f(v)$ for each edge $u v \in E(G)$.

Computation of $P(G, L)$

- If G is an empty graph, then

$$
P(G, L)=\prod_{v \in V(G)}|L(v)| .
$$

- If G is disconnected with components $G_{1}, G_{2}, \cdots, G_{c}$, then

$$
P(G, L)=\prod_{v \in V(G)} P\left(G_{i}, L\right)
$$

Deletion-contraction Theorem: For any edge $e=v_{1} v_{2}$ in G,

$$
P(G, L)=P(G \backslash e, L)-P\left(G / e, L^{\prime}\right),
$$

where $L^{\prime}(v)=L(v)$ for all $v \in V(G) \backslash\left\{v_{1}, v_{2}\right\}$ and $L(u)=L\left(v_{1}\right) \cap L\left(v_{2}\right)$ for $u \in V(G) \backslash V(G / e)$.

Computing $P(G, L)$

- Given a list assignment L, let $P(G, L)$ be the number of proper L-colorings.
- If $L(v)=\{1,2, \cdots, k\}$ for each vertex v in G, then $P(G, L)=P(G, k)$.
- In fact, if $L(u)=L(v)$ for every edge $u v$ in G, then $P(G, L)=P(G, k)$.

$P(G, L)$ for special assignments L

$L(u) \neq L(v)$ for some edge $u v$

k-assignment $L:|L(v)|=k$ for each vertex v in G.
For a k-assignment L in G, if $L(u)=L(v)$ holds for each edge $u v$ in G, then $P(G, L)=P(G, k)$.

$P\left(C_{4}, L\right)=5$ for this 2-assignment L.

Thus,
$P\left(C_{4}, L\right)>P\left(C_{4}, 2\right)=2$

A 2 -assignment L

For the above example, $P(G, L)=P(G, 3)$ holds.

List-coloring function $P_{l}(G, k)$

- For a k-assignment L of G, when $L(u) \neq L(v)$ for some edge $u v$, it is unknown whether $P(G, L)=P(G, k)$ can hold.
- Introduced by Kostochka and Sidorenko in 1992, the list-coloring function of G, denoted by $P_{l}(G, k)$, is defined as follows:
$P_{l}(G, k)$: the minimum value of $P(G, L)$ among all k-assignments L.
Thus,

$$
P_{l}(G, k) \underset{\mathbb{I}}{ }=P(G, k)
$$

$P(G, L) \geq P(G, k)$ holds for every k-assignment L
$\chi_{l}(G)$ is the least positive integer k such that $P_{l}(G, k)>0$. Thus, $\chi_{l}(G) \geq \chi(G)$.

A well-known result:

Thomassen (1994)

$\chi_{l}(G) \leq 5$ for each planar graph G.

Conjecture (Vizing, Bollobás, et al), 1970s

For any line graph $G, \chi_{l}(G)=\chi(G)$.

- By definition, for any integer $k \geq 1$,

$$
P_{l}(G, k) \leq P(G, k) .
$$

- For any integer $k \geq 1$,

$$
P_{l}(G, k)=P(G, k)
$$

II
for all k-assignments $L: P(G, L) \geq P(G, k)$.

Examples for $P_{l}(G, k)<P(G, k)$

- For $G=K_{2,4}$,

$$
P_{l}(G, 2)=0<P(G, 2)
$$

- For any bipartite graph G with a subgraph $K_{2,4}$:

$$
P_{l}(G, 2)=0<P(G, 2)
$$

- For $G=K_{p, p^{p}}$ and $p \geq 2$,

$$
P_{l}(G, p)=0<P(G, 2)
$$

- For $G=K_{n, n}$, where $n=\binom{2 r-1}{r}$ and $2 \leq k \leq r$,

$$
P_{l}(G, k)=0<P(G, k)
$$

Some open problems

The list-chromatic number $\chi_{l}(G)$ of G is the smallest number k such that $P_{l}(G, k)>0$.

Problems proposed by Thomassen (2009)

(1) Does there exist a universal constant α such that, for any graph G and any natural number $k \geq \chi_{l}(G)+\alpha$, $P_{l}(G, k)=P(G, k)$ holds?
(2) Is it true that if $k=\chi_{l}(G)>\chi(G)$, then $P_{l}(G, k)>1$?
(3) Does there exist a graph G and a natural number $k>2$ such that $P_{l}(G, k)=1$?

When does $P_{l}(G, k)=P(G, k)$ hold?

Problem (Kostochka and Sidorenko, 1992)

When does $P_{l}(G, k)=P(G, k)$ hold?
$P_{l}(G, k)=P(G, k)$ holds in the following trivial cases:

- G is an empty graph;
- $P(G, k)=0$ (i.e., $k<\chi(G)$, in particular $k \leq 1$ when G is not empty);
- G is a chordal graph, in particular, G is a tree.

Dong FM (NTU)
List color coloring

Our recent result

Dong and Zhang (2023)

Let G be any simple graph with n vertices and $m(\geq 4)$ edges and k be any integer with $k \geq m-1$. Then, for any k-assignment L of G,

$$
\begin{aligned}
P(G, L)-P(G, k) \geq & \left((k-m+1) k^{n-3}+c(k-m+3) k^{n-5}\right) \\
& \times \sum_{u v \in E(G)}|L(u) \backslash L(v)|,
\end{aligned}
$$

where $c \geq(m-1)(m-3) / 24$.

Development

Let G be any simple graph with m edges.

- (Donner, 1992)
$P(G, k)=P_{l}(G, k)$ holds when k is sufficiently large.
- (Thomassen, 2009)

$$
P(G, k)=P_{l}(G, k) \text { holds when } k \geq|V(G)|^{10} .
$$

- (Wang, Quan and Yan, 2017)
$P(G, k)=P_{l}(G, k)$ holds when $k \geq 1.1346(m-1)$.

Dong FM (NTU)
List color coloring

Corollary

Let G be a connected graph with m edges and and k be an integer with $k \geq m-1$.
For any k-assignment L of G, whenever $L(u) \neq L(v)$ for some edge uv in $G, P(G, L)>P(G, k)$ holds.

Hence $P_{l}(G, k)=P(G, k)$ whenever $k \geq m-1$.

Expression for $P(G, k)$

Expressions for $P(G, k)$ and $P(G, L)$

- Let $G=(V, E)$ be a simple graph with n vertices.
- For any $A \subseteq E$, let $c(A)$ denote the number of components of the spanning subgraph (V, A).
- (Whitney, 1932)

$$
P(G, k)=\sum_{A \subseteq E(G)}(-1)^{|A|} k^{c(A)} .
$$

- The above expression can be simplified further by considering broken-cycles.

Broken cycles

Let η be a bijection from $E(G)$ to $\{1,2, \cdots, m\}$, where $m=|E(G)|$.

For any cycle C in G, if e is the edge on C such that $\eta(e) \leq \eta\left(e^{\prime}\right)$ for each $e^{\prime} \in E(C)$, then $C \backslash\{e\}$ is called a broken cycle.

Let $\mathcal{B}(G)$ be the set of broken cycles in G.

Three broken cycles B_{1}, B_{2}, B_{3} :

$$
\begin{aligned}
B_{1} & =\{1,2,5\} \backslash\{1\} \\
B_{2} & =\{3,4,5\} \backslash \backslash\{3\} \\
B_{3} & =\{1,2,3,4\} \backslash\{1\}
\end{aligned}=\{2,3\} ;(4\} .
$$

Broken-cycle Theorem

Let $\mathcal{N B}(G)$ denote the set of subsets $A \subseteq E(G)$ such that $B \nsubseteq A$ for every $B \in \mathcal{B}(G)$.

Let $\mathcal{N} \mathcal{B}_{i}(G)$ be the set of $A \in \mathcal{N B}(G)$ with $|A|=i$.

Broken-cycle Theorem (Whitney, 1932)

For any simple graph G of order n,

$$
\begin{aligned}
P(G, k) & =\sum_{A \in \mathcal{N B}(G)}(-1)^{|A|} k^{c(A)} \\
& =\sum_{i=0}^{n-1}(-1)^{i}\left|\mathcal{N} \mathcal{B}_{i}(G)\right| k^{n-i} .
\end{aligned}
$$

Similar expression for $P(G, L)$

Broken-cycle Theorem for $P(G, L)$

- Let $G=(V, E)$ be a simple graph with n vertices, and let L be a k-assignment of G.
- For any $A \subseteq E$, let $c(A)$ denote the number of components of the spanning subgraph (V, A).
- For any k-assignment L of G,

$$
P(G, L)=\sum_{A \subseteq E(G)}\left((-1)^{|A|} \beta\left(G_{1}, L\right) \cdots \beta\left(G_{c(A)}, L\right)\right)
$$

where $G_{1}, G_{2}, \cdots, G_{c(A)}$ are the components of (V, A) and

$$
\beta\left(G_{i}, L\right)=\left|\bigcap_{v \in V\left(G_{i}\right)} L(v)\right|
$$

$P(G, L)-P(G, k)$

Let $\mathcal{N B}_{i}(G)$ be the set of spanning forests F of G with $E(F) \in \mathcal{N} \mathcal{B}_{i}(G)$.

Then

$$
\begin{aligned}
& P(G, L)-P(G, k) \\
= & \sum_{i=1}^{n-1}(-1)^{i} \sum_{\left\{T_{1}, \cdots, T_{n-i}\right\} \in \mathcal{N B G}}^{i}(G)
\end{aligned}\left(\prod_{j=1}^{n-i} \beta\left(T_{j}\right)-k^{n-i}\right) .
$$

Lower bound of $P(G, L)-P(G, k)$

Dong and Zhang (2023)

For any simple graph G of order n and any k assignment L,

$$
P(G, L)-P(G, k) \geq \frac{1}{k} \sum_{e=u v \in E(G)}\left(|L(u) \backslash L(v)| \times Q_{\eta}(G, e, k)\right),
$$

where for each $e \in E(G)$,

$$
Q_{\eta}(G, e, k)=\sum_{\substack{1 \leq i \leq n-1 \\ i \text { odd }}} \frac{\left|\mathcal{N} \mathcal{B}_{i}(G, e)\right|}{i} k^{n-i}-\sum_{\substack{1 \leq i \leq n-1 \\ i \text { odd }}}\left|\mathcal{N B}_{i+1}(G, e)\right| k^{n-i-1}
$$

and $\mathcal{N B}_{i}(G, e)$ is the set of broken-cycle free subsets A of $E(G)$ with $e \in A$ and $|A|=i$.

Lower bound of $Q_{n}(G, e, k)$

For any $e \in E(G)$ and $k \geq m-1$,

$$
\begin{aligned}
Q_{\eta}(G, e, k) & =\sum_{\substack{1 \leq i \leq n-1 \\
i \text { odd }}} \frac{\left|\mathcal{N} \mathcal{B}_{i}(G, e)\right|}{i} k^{n-i}-\sum_{\substack{1 \leq i \leq n-1 \\
i o d d}}\left|\mathcal{N B}_{i+1}(G, e)\right| k^{n-i-1} \\
& \geq \sum_{\substack{1 \leq i \leq n-1 \\
i o d d}} \frac{\left|\mathcal{N} \mathcal{B}_{i}(G, e)\right|}{i}(k-m+i) k^{n-i-1} \\
& \geq(k-m+1) k^{n-2}+\frac{\left|\mathcal{N B} B_{3}(G, e)\right|}{3} \cdot(k-m+3) k^{n-4} \\
& \geq(k-m+1) k^{n-2}+\frac{\left|\mathcal{N} \mathcal{B}_{2}(G / e)\right|}{3} \cdot(k-m+3) k^{n-4} \\
& \geq(k-m+1) k^{n-2}+\frac{(m-1)(m-3)}{24}(k-m+3) k^{n-4} .
\end{aligned}
$$

Properties of the size of $\mathcal{N B}_{i}(G, e)$

Property 1: For $1 \leq i<m$,

$$
\left|\mathcal{N B}_{i+1}(G, e)\right| \leq \frac{m-i}{i}\left|\mathcal{N B}_{i}(G, e)\right|
$$

Property 2: $\left|\mathcal{N B}_{1}(G, e)\right|=1$, and for $i \geq 2$,

$$
\left|\mathcal{N B}_{i}(G, e)\right| \geq\left|\mathcal{N B}_{i-1}(G / e)\right| .
$$

Property 3: For any edge e in G,

$$
\left|\mathcal{N B}_{2}(G / e)\right| \geq \frac{(m-1)(m-3)}{8}
$$

Conclusion

Dong and Zhang (2023)

For any integer $k \geq m-1$ and any k-assignment L,

$$
P(G, L)-P(G, k) \geq A \sum_{e=u v \in E(G)}|L(u) \backslash L(v)|
$$

where

$$
\begin{aligned}
A & =(k-m+1) k^{n-3}+\frac{(m-1)(m-3)(k-m+3)}{24} k^{n-5} \\
& >0
\end{aligned}
$$

Therefore, $P_{l}(G, k)=P(G, k)$ whenever $k \geq m-1$.

Hypergraphs

Question:

What is a hypergraph?
Vertex-coloring in hypergraphs \mathcal{H}

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\} \\
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\} \\
& e_{1}=\left\{v_{1}, v_{2}, v_{3}\right\} ; e_{2}=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\} ; \\
& e_{3}=\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\} ; e_{4}=\left\{v_{8}, v_{9}\right\}
\end{aligned}
$$

Figure: Hypergraph $\mathcal{H}=(V, E)$

Hypergraphs

Special hypergraphs

Hypergraph

A hypergraph $\mathcal{H}=(V, E)$ consists of finite sets V and E, where

$$
E \subseteq\{e \subseteq V:|e| \geq 1\} .
$$

If $E \subseteq\{e \subseteq V:|e|=2\}$, then \mathcal{H} is an ordinary graph.

A hypergraph is also called a set system or a family of subsets of a universal set V.

- $\mathcal{H}=(V, E)$ is called r-uniform if $|e|=r(r \geq 2)$ each edge $e \in E$.
- 2-uniform hypergraphs are ordinary graphs.
- \mathcal{H} is called linear if $\left|e_{1} \cap e_{2}\right| \leq 1$ for each pair of distinct edges e_{1} and e_{2} in E.
- A hypergraph is called Sperner if $e_{1} \nsubseteq e_{2}$ for each pair of distinct edges e_{1} and e_{2} in E.

Example

k-colouring of a Hypergraph

Example

Figure: This hypergraph is 3-uniform, linear and Sperner

Example

Figure: This hypergraph has 6 different 2-colorings.

For any positive integer k, this hypergraph has exactly $k^{3}-k$ different k-colourings.

List-coloring function $P_{l}(\mathcal{H}, k)$

- For a hypergraph $\mathcal{H}=(V, E)$ and a positive integer k, a (weak) k-colouring of \mathcal{H} is a mapping $f: V \rightarrow\{1,2, \cdots, k\}$ such that $|\{f(u): u \in e\}| \geq 2$ for each $e \in E$, i.e., for each edge e of \mathcal{H}, at least two vertices in e are colored differently by f.
- $\mathcal{H}=(V, E)$ admits a k-colouring if and only if V can be partitioned into k subsets $V_{1}, V_{2}, \cdots, V_{k}$ such that $e \nsubseteq V_{i}$ for every $e \in E$.
- Let L be a k-assignment of a hypergraph $\mathcal{H}=(V, E)$.
- A proper L-coloring of \mathcal{H} is a mapping $f: V \rightarrow \mathbb{N}$ such that $f(v) \in L(v)$ for each $v \in V(G)$ and for each edge $e \in E$,

$$
|\{f(v): v \in e\}| \geq 2
$$

- $P(\mathcal{H}, L)$ denotes the number of proper L-colorings of \mathcal{H}.
- $P_{l}(\mathcal{H}, k)$ is defined to be the minimum value of $P(\mathcal{H}, L)$ over all k-assignments L.

Results on r-uniform hypergraphs

Analogous conclusion on hypergraphs \mathcal{H}

Wang, Quan and Yan (2020)

For any r-uniform hypergraph \mathcal{H} with m edges, $P(\mathcal{H}, k)=P_{l}(\mathcal{H}, k)$ holds when $k \geq 1.1346(m-1)$.

A parameter $\gamma(\mathcal{H})$

- Let \mathcal{H} be a r-uniform hypergraph with m edges.
- For any edge e in \mathcal{H}, let $E_{r-1}(e)$ be the set of edges $e^{\prime} \in E(\mathcal{H})$ with $\left|e \cap e^{\prime}\right|=r-1$ (i.e., $\left|e \backslash e^{\prime}\right|=1$).
- Let

$$
\gamma(\mathcal{H})=\max _{e \in E(\mathcal{H})}\left|E_{r-1}(e)\right| .
$$

- Clearly, $0 \leq \gamma(\mathcal{H}) \leq m-1$.
- $\gamma(\mathcal{H})=0$ if and only if $\left|e \backslash e^{\prime}\right| \geq 2$ for every pair of edges e and e^{\prime}.
- $\gamma(\mathcal{H})=0$ if $r \geq 3$ and \mathcal{H} is linear.

An example for $\gamma(\mathcal{H})$

- Let $K_{n}^{(r)}$ denote the complete r-uniform hypergraph on n vertices.
- $K_{n}^{(2)}$ is the complete graph K_{n}.
- Then $m=|E(\mathcal{H})|=\binom{n}{r}$.
- For each edge e in $K_{n}^{(r)}$, there are exactly $r(n-r)$ edges e^{\prime} in $K_{n}^{(r)}$ with $\left|e \cap e^{\prime}\right|=r-1$.
- Thus, $\gamma(\mathcal{H})=r(n-r)$.
- If $n \geq 11$ and $3 \leq r \leq n-2$, then

$$
\frac{\gamma(\mathcal{H})}{m-1}=\frac{n(n-r)}{\binom{n}{r}-1} \leq \frac{1}{3}
$$

Our conclusion

Further conclusion

Dong and Zhang (2022+)

Let \mathcal{H} be any r-uniform hypergraph with $m \geq 5$ edges.
Then $P(\mathcal{H}, k)=P_{l}(\mathcal{H}, k)$ holds when one of the following conditions is satisfied:
(1) $k \geq m-1$ if $\gamma(\mathcal{H})>0.8(m-1)$;
(2) $k \geq 0.6(m-1)+0.5 \gamma(\mathcal{H})$ if $\gamma(\mathcal{H}) \leq 0.8(m-1)$; and
(3) $k \geq \frac{1.2(m-1)}{\log (m-1)}$ if $\gamma(\mathcal{H})=0$.

Problems

Problem

Is there a constant c such that for any graph G with n vertices,

Problem

Is there a constant c such that for any graph G with maximum degree $\Delta, P_{l}(G, k)=P(G, k)$ holds whenever $k \geq c \Delta$?

Dong and Zhang (2022+)

Let \mathcal{H} be any uniform hypergraph with m edges. If

$$
t=\min _{e_{1}, e_{2} \in E}\left|e_{1} \backslash e_{2}\right| \geq 2 \text { and } m \geq \frac{t^{3}}{2}+1
$$

then $P(\mathcal{H}, k)=P_{l}(\mathcal{H}, k)$ holds whenever $k \geq \frac{2.4(m-1)}{t \log (m-1)}$.
$P_{l}(G, k)=P(G, k)$ holds whenever $k \geq c n$?
fengming.dong@nie.edu.sg

