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1. Introduction

In this paper, let G be a connected graph with vertex set V(G) = {1,2,...,n} and edge
set F(G). We consider only simple graphs (i.e., no parallel edges or loops) and simple
digraphs (i.e., no parallel arcs or loops). We say that a graph (digraph resp.) G contains
a graph (digraph resp.) G’ if G’ is a subgraph (subdigraph resp.) of G, i.e., V(G') C V(G)
and F(G") C E(G) (A(G") C A(G) resp.).

Let D be a digraph with vertex set V(D) and arc set A(D). If wv € A(D), where
u,v € V(D), then we say u dominates v and denote this by v — v. The subdigraph of
D induced by the set of vertices V- C V(D) (set of edges £ C E(D) resp.) is denoted by
(Vp ((E)p resp.). The out-neighbourhood and in-neighbourhood of a vertex v € V(D)
are defined to be N} (v) = {x € V(D) | v = z} and N5(v) = {y € V(D) | y — v}
respectively. The score s, or outdegree degj(v) of a vertex v € V(D) is defined by
s, = degh(v) = | N7 (v)|. That is, we shall freely interchange between the two notations,
s, and degf (v). The score sequence (or score list) of a tournament T of order n is the
ordered n-tuple (s, sg,...,S,). We usually assume that the vertices are labelled in such
a way that s; < sy < ... <s,. The co-score or indegree degp,(v) of a vertex v € V(D) is
defined by degp(v) = [N, (v)].

For k > 3, we denote the k-dicycle (i.e., directed cycle of length k) by Cj. For a
digraph F', we use the corresponding small letter, say f(D), to denote the number of
copies of I in D. For example, the number of k-dicycles in D is denoted by cx(D).

Theorem 1.1. (Kendall and Smith, Szele and Clark (see [9])) Let T be a tournament
with score sequence S = (s1,S2,...,5,). Then, the number of 3-dicycles in T is

e5(T) = (g) - Z:; (32) (1.1)

Corollary 1.2. If T is a tournament of order n, then

Ln(n+1)(n—1), ifn is odd,
sn(n+2)(n—2), ifn is even.

cs3(T) < {

Equality holds only for regular and near-reqular tournaments in the respective cases.

The expression (1.1) tells us that all tournaments with the same score list has the
same number of 3-dicycles. The next question follows naturally. Does all tournaments
with the same score list have the same number of 4-dicycles?
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Motivation for fixed score list

One of the early problems concerning arc reversals is: Given two tournaments of the
same order, is it possible to obtain one from the other by a sequence of a prescribed type
of arc reversals?

Theorem 1.3. (Ryser [11], Waldrop [12]) Two tournaments have the same score se-
quence if and only if one can be obtained from the other via a sequence of arc reversals

Of Cg.

Example 1.4. The tournaments 7" and 7" in Figure 1 have the same score list (1, 2,2, 2, 3).
By Ryser’s Theorem, T" can be obtained from 7" via a sequence of arc reversals of Cs.
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Figure 1: Cs-reversals for 3 tournaments with the same score sequence (1,2,2,2,3).

Later, Waldrop [12] gave an independent proof of Theorem 1.3 and further established
two results in which “C3” is replaced by “C4” and by “C5”.

Theorem 1.5. (Beineke and Moon [4]) Two bipartite tournaments have the same score
lists if and only if one can be obtained from the other via a sequence of arc reversals of

Cy.

For any graph G, let Lg denote the set of lengths of all cycles (chordless cycles
resp.) in G, i.e., Lo = {l | G contains a chordless [-cycle}. Let G be a connected graph
and H;, 1 = 1,2,...,n, be graphs which are pairwise vertex-disjoint. The composition
G[H1, Hs, ..., H,] is the graph with vertex set V* = (JI_, V(H;) and edge set E* =
Ui, E(H;)) U{wv | u € V(H;),v € V(Hy),jk € E(G)}. We denote the complete graph
of order n and its complement by K, and K, respectively.

Using a generalised notion of orientations having the “same score list”, Wong and
Tay [13,14] extended Theorems 1.3 and 1.5 to orientations of composition of graphs.

Theorem 1.6. (Wong and Tay [13]) Let G' be a graph and p;, i = 1,2,...,n, be positive
integers. Two orientations of G[Kp,, Kp,, ..., Kp,] have the same score list if and only if
one can be obtained from the other via a sequence of arc reversals of C;, wherei € {4}ULg.

Theorem 1.7. (Wong and Tay [14]) Let G be a graph and p;, i = 1,2,...,n, be positive
integers. Two orientations of G[Kp,, Kp,, ..., K,,] have the same score list if and only if
one can be obtained from the other via a sequence of arc reversals of C;, wherei € {3}ULg.

Theorem 1.8. (Wong and Tay [14]) Let G and H;, i = 1,2,...,n, be graphs and let
L=L;U, Ly,. Two orientations of G[Hy, Hs, ..., H,] have the same score list if
and only if one can be obtained from the other via a sequence of arc reversals of C;, where

ie{3,4tUL.



2. Number of 4-dicycles

We denote the four non-isomorphic tournaments of order 4 as Xi, Xo, X3, Xy (see
Figure 2).
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(1,1,2,2) (0,1,2,3) (1,1,1,3) (0,2,2,2)
Two C5 No (s One (s One Cj

Figure 2: All non-isomorphic tournaments of order 4.

Remark 2.1. Note that any tournament of order 4 contains at most a 4-dicycle, and
contains exactly one if and only if it is Xj.

Theorem 2.2. (Beineke and Harary [3], Alspach and Tabib [1]) Let T be a tournament

with score sequence S = (s1,S2,...,5n). Then, the number of 4-dicycles in T is
n " (s “m—1—s = Tij
wo = () -2() -2 ) 2 (V) e
=1 =1 =1 ’UjGO('Ui)

where 1; j is the score of the vertex v; in (Or(v;))r.

Theorem 2.3. (Alspach and Tabib [1]) Let T be a tournament with scores $i, Sa, ..., Sy.
Then,

n n

() - (S () + S5 o]y e,

=1 =1

(m)* = {im(m +1)(m — 1), z:fm 2:3 odd,
m(m+2)(m —2), if m is even.

and
eu(T) < (Z) —max{il (Z)i <”_Zi_ 1)}

Proof: By noting the number of vertices with score 0 and 3 in X;, ¢ = 1,2,3,4, it is
straightforward to derive that

= 21(T) 4+ 2o(T) + 23(T) + 24(T),

U (2.2)



These yield
21(T) = (Z) - z:; <33) — 24(T), and (2.3)
21(T) = (Z) - f: (” N g_ Si) — 24(T). (2.4)

=1

The upper bound follows since zero is the smallest that z3(7") and z4(7T") can be. The
lower bound follows by making x3(7") and z4(7T) as large as possible. This happens
precisely when every outset or every inset of the vertices has the maximum number of
3-dicycles contained in it. O]

Remark 2.4. Note that (2.3) and (2.4) are also expressions of the number of 4-dicycles
in 7" since x1(T) = c4(T).

Corollary 2.5. (Alspach and Tabib [1]) If T is a tournament of order n, then

Ln(n+1)(n—1)(n—3), ifnis odd,
all) < {i—lgn(n +2)(n—2)(n—3), ifn is even.

FEquality is achieved by reqular and near-reqular tournaments in the respective cases.

Corollary 2.6. (Alspach and Tabib [1]) Let T be a class of tournaments with the same
score list. If T,T" € T and Az; = xz(T) — x;(T"), i = 1,2,3,4, then Axy = Axy =
—Aﬁﬂg = —Al'4.

Proof: By further noting the number of vertices with score 2 in X, i = 1,2, 3,4, we have

; (8’2) (" - 11_ Si) = 221(T) + 25(T) + 324(T) and (2.5)

Using (2.2) and (2.5), it follows for any 7, 7" € T that

0= AfEl + A.TQ + A.’L’g + Ai[}4,

0= AZEQ + AI’4,
0 =2Ax; + Axy + 3Ax, and

The result follows by solving this system of linear equations.

Corollary 2.7. Let T be a class of tournaments with a given score sequence. For any
T € T, the following are equivalent:

(1) T contains the minimum (mazimum resp.) copies of Xj.

(2) T contains the minimum (mazimum resp.) copies of Xs.

(3) T contains the mazimum (minimum resp.) copies of Xs.

(4) T contains the mazimum (minimum resp.) copies of Xy.



3. Maximising c4(7)

By Corollary 2.7, if 23(T) = 0 or x4(T) = 0, then 7' has the maximum number
of 4-dicycles in a class of tournaments with a given score list. Alspach and Tabib [1]
characterised all the score lists for which there exists a tournament 7" of order n with

n n
23(T) = 24(T) = 0, in which case z1(T) = (}) — > (%) and 22(T) = 3 (%).
In all computations with subscripts, they alre to be reduced mlociulo n using the
residues {1,2,...,n}. Given a labelling uy, us, ..., u, of vertices of the n-tournament 7',
we say that u; is domination oriented if u; dominates u; 41, Uito, . . . , Uits, and is dominated
by Uits,+1, Wits; 42, - - -, Ui—1, Where s; denotes the score of u;. The tournament 7' is said
to be domination orientable if there is a labelling of its vertices so that every vertex is

domination oriented.

Theorem 3.1. (Alspach and Tabib [1]) The tournament T is domination orientable if
and only if (NT(u)) and (N~ (u)) are transitive tournaments for every vertex u of T.

Using the previous theorem, they characterised the score lists that have tournaments
all of whose outsets and insets are transitive. A score list 51 < s < ... < s, is said to
be balanced if s; + 5,41 =n —1fori=1,2,...,[§]. Notice that when n is odd, then

Stz = (n—1)/2.

Theorem 3.2. Let S = (s1,82,...,5,) be a sequence of nonnegative integers satisfying
51 < 89 < ...8,. Then there is a domination orientable tournament T with score lists S
if and only if either

(i) S=1(0,1,2,...,n—1), or

(i) S is balanced, S is strong tournament realizable and for each m satisfyingn—s, —1 <
m < s, there is some s; equal to m.

Corollary 3.3. Let S = (s1, 82, ..., 8n) be a score list satisfying the conditions of Theorem
3.2. Then the maximum number of 4-dicycles contained in any tournament with score-list

S is

and this bound is attained.

The minimisation problem of ¢4(T") (i.e., achieving the lower bound of Theorem 2.3)
is more difficult as one needs each outset or inset to induce a regular or near-regular
tournament (see [1,5]).

4. Questions for future research

1. Generalise the expressions (1.1) and (2.1) for multipartite tournaments or for other
values of k in Cy, i.e., in a class of multipartite tournaments 7" with the same score list,
what is an expression of the number of 3-dicycles (or 4-dicycles) in 77 Hence, determine
the maximum (or minimum) number of 3-dicycles (or 4-dicycles) in T'.

2. Is it possible to modify the notion of domination orientable for tournaments to settle
the cases x3(7") = 0 and z4(7T") = 0 respectively?
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3. Domination orientable tournaments were considered by Berman [6] in a 5-dicycle
maximisation problem. Generalise the notion of domination orientable to multipartite
tournament. i.e., what significance does the generalised notion have with respect to the
number of k-dicycles?
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