
An Operational Domain-theoretic Treatment of

Recursive Types

Weng Kin Ho
wengkin.ho@nie.edu.sg

Mathematics and Mathematics Education

National Institute of Education, Nanyang Technological University

June 30, 2010

Abstract

We develop an operational domain theory for treating recursive types
with respect to contextual equivalence. The principal approach taken here
deviates from classical domain theory in that we do not produce the re-
cursive types via usual inverse limits constructions - we have it for free
by working directly with the operational semantics. By extending type
expressions to functors between some ‘syntactic’ categories, we establish
algebraic compactness. To do this, we rely on an operational version of
the minimal invariance property. In addition, we apply techniques devel-
oped therein to reason about FPC programs.

Keywords: Operational domain theory, recursive types, FPC, real-
isable functors, operational minimal invariance, algebraic compactness,
generic approximation lemma, denotational semantics

1 Introduction

We develop a domain theory for treating recursive types with respect to contex-
tual equivalence. The language we consider is sequential and has, in addition
to recursive types, sum, product, function and lifted types. It is, by now, well
accepted that the domain-theoretic model of such a language is computationally
adequate but fails to be fully abstract, i.e., the denotational equality of two terms
implies their contextual equivalence but not the converse (Fiore and Plotkin,
1994; Pitts, 1996).

In order to cope with this mismatch, we develop the operational counterpart
of domain theory that deals with the solutions of recursive domain equations,
i.e., via the functional programming language, FPC (Fixed Point Calculus).
Such an enterprise may be seen as an extension of a similar programme in
(Escardo and Ho, 2005) for the language PCF. Indeed several other authors
have already exported domain-theory into the study of the operational order.
Amongst these are (Mason et al., 1996), as well as (Birkedal and Harper, 1999)
who, in particular, gave a relational interpretation to recursive types in an
operational setting.

1

howk
Text Box
Technical Report M2010-01June 2010Mathematics and Mathematics EducationNational Institute of EducationSingapore

howk
Note
MigrationConfirmed set by howk

howk
Note
Completed set by howk

howk
Note
Marked set by howk

howk
Note
None set by howk

howk
Note
MigrationNone set by howk

Our present study is founded on operational tools (which can be traced
back to works like (Gordon, 1994, 1995; Howe, 1989, 1996; Mason et al., 1996))
developed in (Pitts, 1997) but in the setting of the language FPC. The principal
approach taken here deviates from classical domain theory in that we do not
produce recursive types by inverse limits constructions – we have it for free by
directly with the recursive type declaration in FPC. Orthogonal to Birkedal
and Harper’s relational interpretation on recursive types (Birkedal and Harper,
1999), we focus on the connection between an operational version of P. Freyd’s
algebraic compactness and the underlying domain structure of the contextual
order.

We work with two choices of syntactic categories. The first one is the di-
agonal category FPC!

δ built from closed FPC types FPC! while the second
is the product category ˘FPC!. The bulk of the mathematical development,
carried out in Section 3, involves the extension of formal type expressions to
endofunctors on these categories. In order to establish the functoriality of type
expressions, we rely on an operational version of the minimal invariance theorem
– a landmark result in the solution of recursive domain equations. Crucially, the
proof of this key property is based purely on operational arguments. Founded
on such a development, we introduce an operational notion of (parameterised)
algebraic compactness.

The main result of this paper (in Section 4) asserts that the syntactic cate-
gories considered (i.e., both FPC!

δ and ˘FPC!) are (parameterised) algebraically
compact operationally, the consequence of which are covered in the next two
sections. In particular, every closed FPC type has a pre-deflationary structure
from which one discovers an operational proof of the “generic approximation
lemma” (Gibbons and Hutton, 2005). In Section 6, running examples taken
from (Pitts, 1997) demonstrate the versatility of this proof method as compared
to other such as bisimulation techniques (Gordon, 1994, 1995; Pitts, 1997) and
program fusion (Gibbons and Hutton, 2005).

Throughout the discussion, we assume that the reader has some familiarity
with a sequential functional language, for instance, PCF or Haskell. In addi-
tion, we omit the definitions of standard concepts such as η-rules, β-rules, con-
textual pre-order and equivalence, relying on the reader’s pre-requisites. For the
theory of recursive domain equations, the reader is invited to refer to (Abramsky
and Jung, 1994; Gierz et al., 2003), and for category theory (MacLane, 1998).

2 The programming language FPC

We choose to work with a call-by-name version of FPC1 (Fixed Point Calculus)
whose call-by-value version was first introduced by G.D. Plotkin in his 1985
CSLI lecture notes (Plotkin, 1985). In a nutshell, FPC does for recursive defini-
tions of types what PCF does for recursive definitions of functions. Let us now
familiarise ourselves with the syntax and operational semantics of this sequential
functional language. (Experts of FPC may skip this section entirely.)

1The interested reader may also find information on call-by-name FPC in McCusker (Mc-
Cusker, 2000).

2

2.1 The syntax

We assume a set of type variables (ranged over by X,Y , etc.) and the type
expressions are generated by the following grammar:

σ := X | σ × σ | σ + σ | σ⊥ | µX.σ | σ → σ

For type expressions, we have type variables, product types, sum types, lifted
types, recursive types and function types. A closed type is a type expression
containing no free type variables, i.e., if any occurring type variable X is bound
under the scope of a recursive type constructor µX. A type context is a list of
distinct type variables (which may be empty). We write Θ ` σ for the type σ
in context Θ, indicating that the set of free type variables occurring in σ is a
subset of the type context Θ.

The raw FPC terms are given by the syntax trees generated by the following
grammar, modulo α-equivalence (see Figure 1).

t := x term variable
| (s, t) pairs
| fst(p) first projection
| snd(p) second projection
| inl(t) separated sum
| inr(t) separated sum
| case(s) of inl(x).t or inr(y).t′ case
| up(t) lifting
| case(s) of up(x).t case up
| fold(t) fold
| unfold(t) unfold
| λx.t function abstraction
| s(t) function application

Figure 1: FPC syntax

Terms containing no free variables are called closed terms. Otherwise, they
are known as open terms. A term context is a list of distinct term vari-
ables with types. We write Θ; Γ ` t : σ for a term t in (term) context
Γ ≡ x1 : σ1, . . . , xn : σn where Θ ` σi (i = 1, . . . , n) are well-formed types-
in-context. When there is no confusion, we omit the type context Θ. The
typing rules in FPC are given in Figure 2.

Convention: We use Θ to range over type contexts; X,Y,R, S over type vari-
ables; ~X, ~Y over sequences of type variables; ρ, σ, τ over type expressions; Γ
over term contexts; x, y, z, f, g, h over terms variables; ~f,~g over sequences of
term variables, and s, t, u, v over terms. We write σ[τ/X] to represent the result
of replacing X with τ in the type expression σ (avoiding the capture of bound
variables). Similarly, we write s[t/x] to denote capture-free substitution of free
occurrences of the variable x in s by the term t. We also abbreviate the term
context x1 : σ1, . . . , xn : σn as ~x : ~σ.

The following is routine:

Lemma 2.1. (1) If Γ ` t : σ, then fv(t) ⊆ dom(Γ).

3

Γ, x : σ ` x : σ
(var)

Γ, x : σ ` t : τ
Γ ` λxσ.t : σ → τ

(abs)

Γ ` s : σ → τ Γ ` t : σ
Γ ` s(t) : τ

(app)
Γ ` s : σ Γ ` t : τ

Γ ` (s, t) : σ × τ (pair)

Γ ` t : σ × τ
Γ ` fst(t) : σ

(fst)
Γ ` t : σ × τ
Γ ` snd(t) : τ

(snd)

Γ ` t : σ
Γ ` up(t) : σ⊥

(up)
Γ ` s : σ⊥ Γ, x : σ ` t : τ
Γ ` case(s) of up(x).t : τ

(case up)

Γ ` t : σ
Γ ` inl(t) : σ + τ

(inl)
Γ ` t : τ

Γ ` inr(t) : σ + τ
(inr)

Γ ` s : σ1 + σ2 Γ, x : σ1 ` t1 : τ Γ, y : σ2 ` t2 : τ
Γ ` case(s) of inl(x).t1 or inr(y).t2 : τ

(case)

Γ ` t : σ[µX.σ/X]
Γ ` fold(t) : µX.σ

(fold)

Γ ` t : µX.σ
Γ ` unfold(t) : σ[µX.σ/X]

(unfold)

Figure 2: Rules for type assignments in FPC

(2) If Γ ` t : σ and x 6∈ dom(Γ), then Γ, x : τ ` t : σ for any τ .

(3) If Γ,Γ′ ` t : σ and fv(t) ⊆ dom(Γ), then Γ ` t : σ.

(4) If Γ ` ti : σi for i = 1, . . . , n and Γ, x1 : σ1, . . . , xn : σn ` s : σ, then
Γ ` s[~t/~x] : σ.

Let Expσ(Γ) denote the set of FPC terms that can be assigned the closed
type σ, given Γ, i.e., Expσ(Γ) := {t|Γ ` t : σ}. We simply write Expσ for
Expσ(∅).

2.2 Operational semantics

The operational semantics is given by an evaluation relation ⇓, of the form t ⇓ v,
where t and v are closed FPC terms, and v is in canonical form:

v := (s, t) | inl(t) | inr(t) | up(t) | fold(t) | λx.t

A closed term v generated by the above grammar is called a canonical value.
Let Valσ denote the set of canonical values of the closed type σ, i.e.,

Valσ := {v|∅ ` v : σ}.

The relation ⇓ is inductively defined in Figure 3.

Evaluation is deterministic and preserves typing, i.e.,

Proposition 2.2. (1) If t ⇓ v and t ⇓ v′, then v ≡ v′.

(2) If t ⇓ v and t ∈ Expσ, then v ∈ Expσ.

4

v ⇓ v (⇓ can)
s ⇓ λx.s′ s′[t/x] ⇓ v

st ⇓ v (⇓ app)

p ⇓ (s, t) s ⇓ v
fst(p) ⇓ v (⇓ fst)

p ⇓ (s, t) t ⇓ v
snd(p) ⇓ v (⇓ snd)

s ⇓ up(t′) t[t′/x] ⇓ v
case(s) of up(x).t ⇓ v (⇓ case up)

s ⇓ fold(t) t ⇓ v
unfold(t) ⇓ v (⇓ unfold)

s ⇓ inl(t) t1[t/x] ⇓ v
case(s) of inl(x).t1 or inr(y).t2 ⇓ v

(⇓ case inl)

s ⇓ inr(t) t2[t/y] ⇓ v
case(s) of inl(x).t1 or inr(y).t2 ⇓ v

(⇓ case inr)

Figure 3: Rules for evaluating FPC terms

2.3 Fixed point operator

Like in existing works such as (Rohr, 2002), we can define a fixed point operator
using the recursive types. This is done as follows:

fixσ := λf : (σ → σ).k(foldτ (k))

with τ := µX.(X → σ) and k := λxτ .f(unfoldτ (x)x).
Readers who are familiar with call-by-name PCF may wish to note that this

fixed point operator evaluation rule does not hold:

f(fixσ(f)) ⇓ v
fixσ(f) ⇓ v .

2.4 Some notations

In this section, we shall gather at one place the notations which we use regarding
the syntax of FPC.

To begin with, there are three special closed types worth mentioning:

1 := µX.X, Σ := 1⊥, ω := µX.(X⊥)

The type 1 is called the void type and contains no canonical values. Lifting
the type 1 produces the Sierpinski type, 1⊥, which we denote by Σ. The non-
divergent element of Σ, up(⊥), is denoted by >. We shall be exploiting Σ to
make program observations.

Given a : Σ and b : σ, we define

if a then b := case(a) of up(x).b.

Notice that “if a then b” is an “if-then” construct without the usual “else”.
The ordinal type ω has elements 0, 1, . . . ,∞ which can be encoded by defin-

ing:
0 := ⊥ω and n+ 1 = fold(up(n)).

We define n − 1 := case(unfold(n)) of up(x).x and ∞ := fix(+1) where

5

(+1) := λx.x+ 1. The Σ-valued convergence test

(> 0) := λxω.case(unfold(x)) of up(y).>

evaluates to > iff x evaluates to n+ 1 for some n : ω.
Some of our programs in Section 7 makes use of the lazy natural numbers

type, which we now introduce. We define the lazy natural number data type to
be the recursive type

Nat := µX.1 +X.

The data type Nat has canonical values given by:

0 := fold(inl(⊥1)) 0 := fold(inr(⊥Nat))
n+ 1 := succ(n) n+ 1 := succ(n)

∞ := fix(succ)

where succ := fold ◦ inr. For our programs, we are only interested in computa-
tions with canonical values of the form n, which we call the natural numbers.

Using the operationally based theory of equivalence in works such as (Pitts,
1997; Ho, 2006b), it can shown that the contextual orders of 1, Σ, ω and Nat are
the usual ones interpreted by the Scott model. These are illustrated in Figure
4 below:

Figure 4: 1, Σ, ω, Nat

Remark 2.3. Because we want to work with a single evaluation strategy (i.e.,
call-by-name) throughout this paper, our version of FPC does not have flat
natural numbers type and hence does not subsume PCF. If one wishes to have
the flat natural numbers type in the language, one can always introduce an
infinitary sum constructor or a distinguished flat natural numbers type.

2.5 FPC contexts

The FPC contexts, C, are syntax trees generated by the grammar for FPC terms
in Figure 1 augmented by the clause:

C ::= . . . |p

where p ranges over a fixed set of parameters (or holes). The details of the
defining grammar is spelt out in Figure 5.

6

C := x term variables
| (S, T) pairs
| fst(P) first projection
| snd(P) second projection
| inl(T) separated sum
| inr(T) separated sum
| case(S) of inl(x).T or inr(y).T ′ case
| up(T) liftings
| case(S) of up(x).T case up
| fold(T) fold
| unfold(T) unfold
| λx.T function abstraction
| S(T) function application
| p parameter (or hole)

Figure 5: FPC contexts

Convention. We use capital letters, for instance, C, T and V to range over
FPC contexts.

We assume a function that assigns types to parameters and write −σ to
indicate that a parameter − has closed type σ. We restrict ourselves to contexts
which are typable. The relation

Γ ` C : σ

assigning a closed type σ to a context C given the term Γ, is inductively gener-
ated by axioms and rules in Figure 6. We define

Ctxσ(Γ) := {C|Γ ` C : σ}

to be the set of FPC contexts that can be assigned to the closed type σ, given
Γ. We write Ctxσ for Ctxσ(∅).

Let Γ ` s, t : σ be two FPC terms-in-context. We write

Γ ` s vσ t

to mean that for all ground contexts C[−σ] ∈ CtxΣ with Γ trapped within
C[−σ],

C[s] ⇓ > =⇒ C[t] ⇓ >.

The relation v is called the contextual preorder and its symmetrisation is called
the contextual equivalence, denoted by =. For a given term σ, the order induced
by the preorder v on the set of equivalence classes of closed terms of type σ is
called the contextual order. Notice that we have chosen the ground type Σ to
be the type on which program observations are based.

Remark 2.4. Let s, t : σ be closed terms. Then s vσ t iff

∀p : σ → Σ.(p(s) ⇓ > =⇒ p(t) ⇓ >).

Proof. (⇒): For each function p : σ → Σ, define the context C[−σ] ∈ CtxΣ to

7

Γ, x : σ ` x : σ
(var)

Γ, x : σ ` T : τ
Γ ` λxσ.T : σ → τ

(abs)

Γ ` S : σ → τ Γ ` T : σ
Γ ` S(T) : τ

(app)
Γ ` S : σ Γ ` T : τ

Γ ` (S, T) : σ × τ (pair)

Γ ` T : σ × τ
Γ ` fst(T) : σ

(fst)
Γ ` T : σ × τ
Γ ` snd(T) : τ

(snd)

Γ ` T : σ
Γ ` up(T) : σ⊥

(up)
Γ ` S : σ⊥ Γ, x : σ ` T : τ
Γ ` case(S) of up(x).T : τ

(case up)

Γ ` T : σ
Γ ` inl(T) : σ + τ

(inl)
Γ ` T : τ

Γ ` inr(T) : σ + τ
(inr)

Γ ` S : σ1 + σ2 Γ, x : σ1 ` T1 : τ Γ, y : σ2 ` T2 : τ
Γ ` case(S) of inl(x).T1 or inr(y).T2 : τ

(case)

Γ ` T : σ[µX.σ/X]
Γ ` fold(T) : µX.σ

(fold)

Γ ` T : µX.σ
Γ ` unfold(T) : σ[µX.σ/X]

(unfold)

Γ ` −σ : σ
(par)

Figure 6: Typing rules for FPC contexts

be p(−σ).
(⇐): Given a context C[−σ] ∈ CtxΣ, define the function p : σ → Σ to be
λxσ.C[x] where x is a fresh variable not trapped in C[−σ].

8

3 Foundations

Our theory reported here builds upon the following foundations.

1. Every closed FPC type is rationally-chain complete. We apply A.M. Pitt’s
operationally based theories of program equivalence (Pitts, 1997) to FPC
where contextual equivalence is taken with respect to the unit type Σ.
Most importantly, each closed type σ is (pre)ordered contextually (denoted
by vσ) is closed under the formation of rational chains:

⊥σ vσ f(⊥σ) vσ f (2)(⊥σ) vσ . . . vσ f (n)(⊥σ) vσ . . .

where ⊥σ := fix(λxσ.x) and f : σ → σ. Moreover,
⊔
n f

(n)(⊥σ) = fix(f).
The crucial point here is that rational-chain completeness is proven by
purely operational means and is independent of the properties of recursive
type expressions reported herein.

2. Every program of function type is rationally continuous, i.e., for any h :
σ → τ and f : σ → σ it holds that

h(
⊔
n

f (n)(⊥σ)) =
⊔
n

h ◦ f (n)(⊥σ).

In addition, every program of function type is monotone with respect to
the contextual preorder.

3. The operators fold and unfold are mutually inverse (modulo contextual
equivalence). This can be established by involving one of the many η- and
β-rules enjoyed by the contextual equivalence, namely:

fold ◦ unfold = id (η-rule) & unfold ◦ fold = id (β-rule).

4. Inequational logic and extensionality properties concerning the contextual
preorder are properties so natural that they are frequently invoked without
explicit mention. For the convenience of our readers, these properties are
listed in Figures 7 and 8 below:

5. It is sometimes useful to know if two programs are Kleene equivalent. For
each closed type σ, define the Kleene preorder and Kleene equivalence as
follows:

t vklσ t′ ⇐⇒ ∀v.(t ⇓ v =⇒ t′ ⇓ v)

and
t ∼=kl

σ t′ ⇐⇒ (t vklσ t′) ∧ (t′ vklσ t).

An important operational result is that any two Kleene equivalent pro-
grams are contextually equivalent.

The proofs of the above foundational facts are labour-intensive re-workings of
those developed in (Pitts, 1997) in the present language of FPC and are thus
omitted from this paper. Readers who are interested in pursuing such details
may wish to refer to (Ho, 2006b), Chapters 7 and 8.

9

Γ ` t : σ =⇒ Γ ` t vσ t (1)
(Γ ` t vσ t′ ∧ Γ ` t′ vσ t′′) =⇒ Γ ` t vσ t′′ (2)
(Γ ` t vσ t′ ∧ Γ ` t′ vσ t) ⇐⇒ Γ ` t =σ t

′ (3)

Γ, x : σ ` t vτ t′ =⇒ Γ ` λx.t vσ→τ λx.t′ (4)
(Γ ` s vσ⊥ s′ ∧ Γ, x : σ ` t vρ t′) =⇒ Γ ` case(s) of up(x).t (5)

vρ case(s′) of up(x).t′

(Γ ` s vσ+τ s
′ ∧ Γ, x : σ ` t1 vρ t′1 ∧ Γ, y : τ ` t2 vρ t′2) =⇒ (6)

Γ ` case(s) of inl(x).t1 or inr(y).t2
vρ case(s′) of inl(x).t′1 or inr(y).t′2

(Γ ` t vσ t′ ∧ Γ ⊆ Γ′) =⇒ Γ′ ` t vσ t′ (7)
(Γ ` t vσ t′ ∧ Γ, x : σ ` s : τ) =⇒ Γ ` s[t/x] vτ s[t′/x] (8)
(Γ ` t : σ ∧ Γ, x : σ ` s vτ s′) =⇒ Γ ` s[t/x] vτ s′[t/x] (9)

Figure 7: Inequational logic

4 FPC considered as a category

Business starts proper here: we now set up an appropriate categorical framework
upon which an operational domain-theoretic treatment of recursive types can be
carried out. In this section, we show how FPC types-in-context can be viewed
as realisable functors. In order to achieve this, we prove operational versions of
the Plotkin’s uniformity principle (also known as the Plotkin’s axiom) and the
minimal invariance property.

The first category we consider, called FPC!, allows us to interpret types-in-
context X1, . . . , Xn ` σ as functors FPCn

! → FPC!, provided type recursion in
σ does not occur in contravariant positions (Sections 4.1 and 4.2). The second
category, which is constructed out of FPC!, called FPC!

δ, allows us to remove
this restriction (Section 4.3).

4.1 The category of FPC types

We now give an account of the categorical framework within which our theory
is organised. Our approach, largely adapted from Abadi & Fiore (Abadi and
Fiore, 1996), turns out to be a convenient option amongst others. We carefully
explain this in two stages:

(i) understand the basic type expressions (i.e., type expressions in which type
recursion does not occur in contravariant positions) as functors, and then

(ii) consider those built from all possible type constructors.

10

For all s, s′ ∈ Expσ(~x : ~σ),

~x : ~σ ` s vσ s′ ⇐⇒ ∀ti ∈ Expσi(i = 1, . . . , n). (10)

(s[~t/~x] vσ s′[~t/~x]).

For all s, s′ ∈ ExpΣ,

s vΣ s′ ⇐⇒ (s ⇓ > =⇒ s′ ⇓ >). (11)

For all p, p′ ∈ Expσ×τ ,

p vσ×τ p′ ⇐⇒ (fst(p) vσ fst(p′) ∧ snd(p) vτ snd(p′)). (12)

For all s, s′ ∈ Expσ+τ ,

s vσ+τ s
′ ⇐⇒ ∀a ∈ Expσ.∀b ∈ Expτ . (13)

(s ⇓ inl(a) =⇒ ∃a′ ∈ Expσ.s
′ ⇓ inl(a′) ∧ a vσ a′) ∧

(s ⇓ inr(b) =⇒ ∃b′ ∈ Expτ .s
′ ⇓ inr(b′) ∧ b vτ b′).

For t, t′ ∈ Expσ⊥ ,

t vσ⊥ t′ ⇐⇒ ∀s ∈ Expσ. (14)
(t ⇓ up(s) =⇒ ∃s′.t′ ⇓ up(s′) ∧ s vσ s′).

For all t, t′ ∈ ExpµX.σ,

t vµX.σ t′ ⇐⇒ unfold(t) vσ[µX.σ/X] unfold(t′). (15)

For all f, f ′ ∈ Expσ→τ ,

f vσ→τ f ′ ⇐⇒ ∀t ∈ Expσ.(f(t) vτ f ′(t)). (16)

Figure 8: Extensionality properties

The objects of the category FPC are the closed FPC types (i.e., type expres-
sions with no free variables) and the morphisms are closed terms of function-type
(modulo contextual equivalence). Given closed type σ, the identity morphism
idσ is just the closed term λxσ.x and the composition of two morphisms f and
g is defined as

g ◦ f := λx.g(f(x)).

The category FPC! is the subcategory of FPC whose morphisms are the strict
FPC-morphisms.

11

We make use of the following notations:

~σ for a sequence of closed types σ1, . . . , σn;
~t for a sequence of closed terms t1, . . . , tn;
~X for a sequence of type variables X1, . . . , Xn;
~x for a sequence of term variables x1, . . . , xn;
~σ/ ~X for the substitutions σ1/X1, . . . , σn/Xn;
~t/~x for the substitutions t1/x1, . . . , tn/xn;
~f : ~R→ ~S for f1 : R1 → S1, . . . , fn : Rn → Sn.

When we write ~X,X, it is understood that X does not appear in ~X.

4.2 Basic functors

FPC type expressions are called basic if they are generated by the following
fragment of the grammar:

B := C |X | B× B | B + B | B⊥ | µX.B| C→ B

where C ranges over closed types. Note that the set of basic type expressions is
a proper subset of those type expressions in which recursion does not occur in
the contravariant positions. For instance, µX.((X → C)→ C is not basic.

A basic functor T : FPCn
! → FPC! is one realised by:

(1) a basic type-in-context ~X ` τ ;

(2) a term-in-context

~R, ~S; ~f : ~R→ ~S ` t : τ [~R/ ~X]→ τ [~S/ ~X]

such that for any ~σ ∈ FPCn
! , it holds that

T (~σ) = τ [~σ/ ~X]

and for any ~ρ and ~σ, and any ~v ∈ FPC!(~ρ, ~σ), it holds that

T (~v) = t[~v/~f].

Now we show how basic type expressions define basic functors. We first
present the construction and then prove functoriality. For a basic type expres-
sion B in context Θ ≡ ~X, we define, by induction on the structure of types, an
associated functor SΘ`B : FPCn

! → FPC! (or simply S) as follows:

(1) Closed type.
Let Θ ` C.
For object ~σ ∈ FPCn

! , define S(~σ) = C.
For morphism ~v ∈ FPC!(~ρ, ~σ), define S(~v) = idC.

(2) Type variable.
Let Θ ` Xi (i ∈ {1, . . . , n}).
For object ~σ ∈ FPCn

! , define S(~σ) = σi.

12

For morphism ~v ∈ FPC!(~ρ, ~σ), define S(~v) = vi.

Let Θ ` B1, B2 be given. Assume that Tj (j = 1, 2) is the basic functor
associated with Θ ` Bj , whose morphism part is realised by

~R, ~S; ~f : ~R→ ~S ` tj : Bj [~R/ ~X]→ Bj [~S/ ~X].

(3) Product type.
For object ~σ ∈ FPCn

! , define S(~σ) = T1(~σ)× T2(~σ).
For morphism ~v ∈ FPC!(~ρ, ~σ), define S(~v) to be the unique morphism h
such that the following diagram

S(~ρ)
πj- Tj(~ρ)

S(~σ)

h

?

πj
- Tj(~σ)

Tj(~v)

?

commutes (j = 1, 2). The morphism part of S is realised by

~R, ~S; ~f : ~R→ ~S ` λz.(t1(π1z).t2(π2z)).

(4) Sum type.
For object ~σ ∈ FPCn

! , define S(~σ) = T1(~σ) + T2(~σ).
For morphism ~v ∈ FPC!(~ρ, ~σ), define S(~v) to be the unique morphism h
which makes the diagrams

S(~ρ) �
inl

T1(~ρ) S(~ρ) �
inr

T2(~ρ)

S(~σ)

h

?
�

inl
T1(~σ)

T1(~v)

?
S(~σ)

h

?
�

inr
T2(~σ)

T2(~v)

?

commute. The morphism part of S is realised by

~R; ~S; ~f : ~R→ ~S ` λz.case(z)of

 inl(x).inl(t1(x))

inr(y).inr(t2(y))

(5) Lifted type.
Let Θ ` B be given and T its associated basic functor.
For object ~σ ∈ FPCn

! , define S(~σ) = (T (~σ))⊥.
For morphism ~v ∈ FPC!(~ρ, ~σ), define S(~v) to be the unique morphism h

13

which makes the diagram

S(~ρ) �
up

T (~ρ)

S(~ρ)

h

?
�

up
T (~σ)

T (~v)

?

commute. The morphism part of S is realised by

~R, ~S; ~f : ~R→ ~S ` λz.case(z) of up(x).up(t(x))

where the morphism part of T is realised by

~R, ~S; ~f : ~R→ ~S ` t : B[~R/ ~X]→ B[~S/ ~X].

(6) Recursive type.
Let Θ, X ` B (X /∈ {X1, . . . , Xn}) and T the associated basic functor.
For object ~σ ∈ FPCn

! , define S(~σ) = µX.T (~σ,X). We write T (~σ, S(~σ))
for B[~σ/ ~X, S(~σ)/X].
For the morphism ~v ∈ FPC!(~ρ, ~σ), define S(~v) to be the least morphism
h that makes the diagram

S(~ρ)
unfoldS(~ρ)

- T (~ρ, S(~ρ))

S(~σ)

h

?

unfoldS(~σ)
- T (~σ, S(~σ))

T (~v, h)

?

commute. The morphism part of S is realised by

~R, ~S; ~f : ~R→ ~S ` fix(λg.fold ◦ t[g/f] ◦ unfold)

where the morphism part of T is realised by

~R,R, ~S, S; ~f : ~R→ ~S, f : R→ S ` t : B[~R/ ~X,R/X]→ B[~S/ ~X, S/X].

(7) Restricted function type.
Let Θ ` B be given and T the associated functor. Let C be a closed type.
We want to define the functor S which is associated to Θ ` C→ B.
For object ~σ ∈ FPCn

! , define S(~σ) = C→ T (~σ).
For morphism ~v ∈ FPC!(~ρ, ~σ), define S(~v) to be

λg : (C→ T (~ρ))→ (C→ T (~σ)).T (~v) ◦ g.

14

The morphism part of S is realised by

~R, ~S; ~f : ~R→ ~S ` λg.t ◦ g

where the morphism part of T is realised by

~R, ~S; ~f : ~R→ ~S ` t : B[~R/ ~X]→ B[~S/ ~X].

Functoriality relies on the following two key lemmas.

Lemma 4.1. (Plotkin’s uniformity principle)
Let f : σ → σ, g : τ → τ be FPC programs and h : σ → τ be a strict program,
i.e., h(⊥σ) = ⊥τ , such that the following diagram

σ
h - τ

σ

f

?

h
- τ

g

?

commutes, i.e., g ◦ h = h ◦ f . Then it holds that

fix(g) = h(fix(f)).

Proof. Using rational-chain completeness, rational continuity, h ◦ f = g ◦ h in
turn, it follows that

h(fix(f)) = h(
⊔
n f

(n)(⊥σ))
=

⊔
n h ◦ f (n)(⊥σ)

=
⊔
n g

(n) ◦ h(⊥σ)
=

⊔
n g

(n)(⊥τ)
= fix(g).

Remark 4.2. Notice that this uniformity of least fixed point relies on the
rational-chain completeness enjoyed by FPC types and rational continuity of
function-type programs. Both these facts which have already been highlighted
Section 3 (see Facts (1) and (2)) are fully justified by Theorem 7.6.6 of (Ho,
2006b).

The functoriality of type expressions relies crucially on the following lemma,
which is applied to establish preservation of identity morphisms.

Lemma 4.3. (Operational minimal invariance for basic functors)
Let T : FPCn+1

! → FPC! be a basic functor and ~σ any sequence of closed types.
Write S(~σ) for µX.T (~σ,X). Then the least endomorphism e : S(~σ)→ S(~σ) for

15

which the diagram

S(~σ)
unfoldS(~σ)

- T (~σ, S(~σ))

S(~σ)

e

?

unfoldS(~σ)
- T (~σ, S(~σ))

T (~id, e)

?

commutes must be idS(~σ).

An operational proof of this is developed in Section 5 below. For the moment,
we observe that, although the Scott model is not fully abstract, there is a quick
denotational proof: The interpretation of e in the Scott model, denoted by [[e]],
makes the corresponding diagram commute. But it is well-known in Domain
Theory that the only such endomorphism on [[S(~σ)]] must be id[[S(~σ)]]. Now, by
Lemma 4.4 below, it follows that e = idS(~σ), and hence Lemma 4.3 is proved.

Lemma 4.4. Let e : τ → τ be a closed term such that [[e]] = id[[τ]] in the
Scott-model. Then e = idτ .

Proof. Notice that [[e]] = id[[τ]] = [[idτ]]. By computational adequacy of the Scott
model, it follows that e = idτ .

We are now ready to prove functoriality. First we prove the preservation of
composition of morphisms. Consider the following composition of morphisms:

~σ
~u
- ~ρ

~v
- ~τ

It is easy to see that type expressions which are of the following forms: type
variables, sum types, product types and lifted types, preserve composition as
the corresponding constituent functors do. Thus, it remains to verify that con-
structors of the form µX.T (~X,X) do preserve the above composition, i.e., the
following diagram commutes:

µX.T (~σ,X)
µX.T (~u,X) - µX.T (~ρ,X)

µX.T (~v,X)- µX.T (~τ ,X)

µX.T (~σ,X)

=

?

µX.T (~v ◦ ~u,X)
- µX.T (~τ ,X)

=
6

Let us abbreviate µX.T (~σ,X) by S(~σ) as before.

16

Consider the following diagram:

(S(~ρ)→ S(~τ))
− ◦ S(~u)- (S(~σ)→ S(~τ))

(S(~ρ)→ S(~τ))

Φ

?

− ◦ S(~u)
- (S(~σ)→ S(~τ))

Ψ

?

where Φ = λh.foldS(~τ) ◦ T (~v, h) ◦ unfoldS(~ρ) and
Ψ = λf.foldS(~τ) ◦ T (~v ◦ ~u, f) ◦ unfoldS(~σ).

The diagram commutes because for any h : S(~ρ)→ S(~τ),

Ψ(h ◦ S(~v))
= foldS(~τ) ◦ T (~v ◦ ~u, h ◦ S(~u)) ◦ unfoldS(~σ)

= foldS(~τ) ◦ T (~v, h) ◦ unfoldS(~ρ) ◦ foldS(~ρ) ◦ T (~u, S(~u)) ◦ unfoldS(~σ)

= Φ(h) ◦ S(~u)

Because − ◦ S(~u) is a strict program, by Lemma 4.1 it follows that

S(~v ◦ ~u) = fix(Ψ) = fix(Φ) ◦ S(~u) = S(~v) ◦ S(~u).

Next we prove the preservation of identity morphisms. By definition S(id~σ) is
the least solution e of the equation e = foldS(~σ) ◦ T (id~σ, e) ◦ unfoldS(~σ). But
Lemma 4.3 already asserts that e = idS(~σ).

4.3 Realisable functors

An unrestricted FPC type expression is more problematic.

(1) Once the function-type → constructor is involved, one needs to separate
the covariant and the contravariant variables. For instance, X → Y con-
sists of X as a contravariant variable and Y as a contravariant variable.

(2) A particular type variable may be covariant and contravariant. For exam-
ple, the type variable X in X → X is contravariant in the first slot and
covariant in the second.

The usual solution to this problem of mixed variance, following (Freyd, 1992),
is to work with the category FPCop

! ×FPC!. In this section, we do not do so2

but instead work with a full subcategory, FPC!
δ, of this. Define FPC!

δ, the
diagonal category, to be the full subcategory of FPCop

! × FPC! whose objects
are those of FPC! and morphisms being pairs of FPC!-morphisms, denoted by
u : σ → τ (or 〈u−, u+〉), of the form:

σ
u+
-�

u−
τ

2We shall consider the product category FPCop
! × FPC! in Section 6.

17

In FPC!
δ, u ◦ v, is defined as the pair 〈v− ◦ u−, u+ ◦ v+〉.

The reader should note the use of the following notations.
Notations. In order to avoid excessive use of +, − and �, we write

f : R→ S for f+ : R � S : f−,
~f : ~R→ ~S for ~f+ : ~R � ~S : ~f−.

Definition 4.5. A realisable functor T : (FPC!
δ)n → FPC!

δ is a functor which
is realised by:

(1) a type-in-context ~X ` τ ; and

(2) a pair of terms-in-context of the form:

~R, ~S; ~f : ~R→ ~S ` t : τ [~R/ ~X]→ τ [~S/ ~X]

such that for any ~σ ∈ (FPC!
δ)n, it holds that

T (~σ) = τ [~σ/ ~X]

and for any ~ρ, ~σ ∈ (FPC!
δ)n, and any ~u ∈ (FPC!

δ)n(~ρ, ~σ),

T (~u) = t[~u/~f].

Remark 4.6. (1) Let ~u,~v ∈ (FPC!
δ)n(~ρ, ~σ) be given and suppose that ~u v

~v. Then by monotonicity, any realisable functor is locally monotone in the
sense that T (~u) v T (~v).

(2) Let ~uk ∈ (FPC!
δ)n(~ρ, ~σ) be rational chains. Then by rational continuity,

any realisable functor is locally continuous in the sense that T (
⊔
k ~uk) =⊔

k T (~uk).

Definition 4.7. A type expression is functional if it is of the form τ1 → τ2 for
some types-in-context Θ ` τ1, τ2.

We show how FPC type expressions define realisable functors. Again we
proceed by induction on the structure of types. The expert reader can choose
to skip the details for the non-functional type expressions and read only those
of the functional ones. This is because the cases for the non-functional type
expressions are similar to those found in the construction of the basic functors,
i.e., one merely upgrades these to functors typed (FPC!

δ)n → FPC!
δ by adding

the obvious dual arrow when defining the morphism part. However, for the sake
of completeness, we do include details of these constructions as well.

(1) Functional type expressions.
Let ~X ` τ1, τ2 be given. By induction hypothesis, there are functors T1

and T2 associated to these whose morphism parts can be realised by the
following terms-in-context (j = 1, 2):

~R, ~S; ~f : ~R→ ~S ` tj : τj [~R/ ~X]→ τj [~S/ ~X].

18

We now define the functor T associated to ~X ` τ1 → τ2 as follows:
For any ~σ ∈ (FPC!

δ)n, define T (~σ) = T1(~σ)→ T2(~σ).
For any ~u ∈ (FPC!

δ)n(~ρ, ~σ), define T (~u) to be v where

v− := λh : T1(~σ)→ T2(~σ).λx : T1(~ρ).Π1T2(~u) ◦ h ◦Π2T1(~u)(x)
v+ := λg : T1(~ρ)→ T2(~ρ).λy : T1(~σ).Π2T2(~u) ◦ g ◦Π1T1(~u)(y)

The morphism part of T is given by:

~R, ~S; ~f : ~R→ ~S ` t : (τ1 → τ2)[~R/ ~X]→ (τ1 → τ2)[~S/ ~X]

where

t− := λh : (τ1 → τ2)[~S/ ~X].λx : τ1[~R/ ~X].t−2 ◦ h ◦ t
+
1 (x)

t+ := λg : (τ1 → τ2)[~R/ ~X].λy : τ1[~S/ ~X].t+2 ◦ g ◦ t
−
1 (y).

Note that T preserves composition and identities since Tj ’s do.

(2) Non-functional type expressions.

(a) Type variable.
Let X1, . . . , Xn ` Xi be given.
For any ~σ ∈ (FPC!

δ)n, define T (~σ) = σi.
For any ~ρ, ~σ ∈ (FPC!

δ)n and any ~u ∈ (FPC!
δ)n(~ρ, ~σ), define T (~u)

to be ui : ρi → σi. The morphism part of T is realised by

~R, ~S; ~f : ~R→ ~S ` fi : Ri → Si.

Note that T preserves composition and identities.
For the purpose of cases (b) and (c), let us suppose we are given
~X ` τ1, τ2. By induction hypothesis, there are associated realisable
functors Tj (j = 1, 2) whose morphism parts are realised by

~R, ~S; ~f : ~R→ ~S ` tj : τj [~R/ ~X]→ τj [~S/ ~X].

(b) Product type.
We want to define the functor T associated to ~X ` τ1 × τ2.
For any ~σ ∈ (FPC!

δ)n, define T (~σ) = T1(~σ)× T2(~σ).
For any ~ρ, ~σ ∈ (FPC!

δ)n and any ~u ∈ (FPC!
δ)n(~ρ, ~σ), define T (~u)

to be v where

v− := λp : T1(~σ)× T2(~σ).(Π1T1(~u)(fst(p)),Π1T2(~u)(snd(p)))
v+ := λq : T1(~ρ)× T2(~ρ).(Π2T1(~u)(fst(q)),Π2T2(~u)(snd(q))).

The morphism part of T are realised by

~R, ~S; ~f : ~R→ ~S ` t : (τ1 × τ2)[~R/ ~X]→ (τ1 × τ2)[~S/ ~X]

19

where

t− := λp : (τ1 × τ2)[~S/ ~X].(t−1 (fst(p)), t−2 (snd(p)))

t+ := λq : (τ1 × τ2)[~R/ ~X].(t+1 (fst(q)), t+2 (snd(q))).

Note that T preserves composition and identities since Tj ’s do.

(c) Sum type.
We want to define the functor T associated to ~X ` τ1 + τ2.
For any ~σ ∈ (FPC!

δ)n, define T (~σ) = T1(~σ) + T2(~σ).
For any ~ρ, ~σ ∈ (FPC!

δ)n and any ~u ∈ (FPC!
δ)n(~ρ, ~σ), define T (~u)

to be v where

v− := λz.T1(~σ) + T2(~σ).case(z)of

 inl(x).inl(Π1T1(~u)(x))

inr(y).inr(Π1T2(~u)(y))

v+ := λw.T1(~ρ) + T2(~ρ).case(z)of

 inl(x).inl(Π2T1(~u)(x))

inr(y).inr(Π2T2(~u)(y)).

The morphism part of T is realised by

~R; ~S; ~f : ~R→ ~S ` t : (τ1 + τ2)[~R/ ~X]→ (τ1 + τ2)[~S/ ~X]

where

t− := λz.(τ1 + τ2)[~S/ ~X].case(z)of

 inl(x).inl(t−1 (x))

inr(y).inr(t−2 (y))

t+ := λz.(τ1 + τ2)[~R/ ~X].case(z)of

 inl(x).inl(t+1 (x))

inr(y).inr(t+2 (y)).

Again T preserves composition and identities since Tj ’s do.

(d) Lifted type.
Let ~X ` τ be given and by induction hypothesis there is an associated
realisable functor T . We want to define a realisable functor T⊥ which
is associated to ~X ` τ⊥.
For any ~σ ∈ (FPC!

δ)n, define T⊥(σ) = T (~σ)⊥.
For any ~ρ, ~σ ∈ (FPC!

δ)n, and any ~u ∈ (FPC!
δ)n(~ρ, ~σ), define T (~u)

to be v where

v− := λz : (T (~σ))⊥.case(z) of up(x).up(Π1T (~u)(x))
v+ := λw : (T (~ρ))⊥.case(w) of up(x).up(Π2T (~u)(x)).

If the morphism part of T is realised by

~R, ~S; ~f : ~R→ ~S ` t : τ⊥[~R/ ~X]→ τ [~S/ ~X],

20

then the morphism part of T⊥ is realised by

~R, ~S; ~f : ~R→ ~S ` t′ : τ⊥[~R/ ~X]→ τ [~S/ ~X]

where

(t′)− := λz : τ⊥[~S/ ~X].case(z) of up(x).up(t−(x))

(t′)+ := λw : τ⊥[~S/ ~X].case(w) of up(x).up(t+(x)).

Note that T⊥ preserves composition and identities since T does.
(e) Recursive type.

Let ~X,X ` τ be given. The induction hypothesis asserts that there is
a realisable functor T : (FPC!

δ)n+1 → FPC!
δ associated to ~X,X `

τ . Since T is realisable, there is a pair of terms-in-context

~R,R, ~S, S; ~f : ~R→ ~S, f : R→ S ` t : τ [~R/ ~X,R/X]→ τ [~S/ ~X, S/X]

which realises the morphism part of it.
We want to define a realisable functor

S : (FPC!
δ)n → FPC!

δ

associated to ~X ` µX.τ .
For any ~σ ∈ (FPC!

δ)n, define S(~σ) = µX.τ [~σ/ ~X].
For any ~ρ, ~σ ∈ (FPC!

δ)n, and any ~u ∈ (FPC!
δ)n(~ρ, ~σ), define S(~u)

to be the least morphism v such that the following diagram commute:

S(~ρ)
v - S(~σ)

T (~ρ, S(~ρ))

iS(~ρ)

?

T (~u, v)
- T (~σ, S(~σ))

iS(~σ)

?

where i := 〈fold,unfold〉.
Equivalently, S(~u) := fix(Φ) where Φ is defined as:

λv.i−1
S(~σ) ◦ T (~u, v) ◦ iS(~ρ).

The morphism part of S is realised by:

~R, ~S; ~f : ~R→ ~S ` fix(λv.i−1

S(~S)
◦ t[v/f] ◦ iS(~R)).

By Lemma 4.8 below, S preserves composition. That S preserves
identities is due to operational minimal invariance, i.e., Theorem 4.9
– whose proof we shall present in the next section.

Lemma 4.8. S preserves composition of morphisms.

Proof. The proof strategy3 used here is the same as that used for establishing
3That least homomorphisms compose can also be found in Lemma 5.3.1 of (Abramsky and

21

that basic type expressions (as functors) do preserve compositions. To show that
S preserves, we must prove that for any morphism pairs ~u ∈ (FPC!

δ)n(~ρ, ~σ)
and ~v ∈ (FPC!

δ)n(~σ, ~τ), it holds that

S(~v) ◦ S(~u) = S(~v ◦ ~u).

We denote 〈fold,unfold〉 by i. Define two programs as follows:

Ψ1 : (S(~τ)→ S(~σ))× (S(~σ)→ S(~τ)) −→ (S(~τ)→ S(~σ))× (S(~σ)→ S(~τ))
Ψ1 := λ(a, b).i−1

S(~τ) ◦ T (~v, a, b) ◦ iS(~σ)

Ψ2 : (S(~τ)→ S(~ρ))× (S(~ρ)→ S(~τ)) −→ (S(~τ)→ S(~ρ))× (S(~ρ)→ S(~τ))
Ψ1 := λ(c, d).i−1

S(~τ) ◦ T (~v ◦ ~u, c, d) ◦ iS(~ρ)

Then the following diagram

(S(~τ)→ S(~σ))× (S(~σ)→ S(~τ))
− ◦ S(~u)- (S(~τ)→ S(~ρ))× (S(~ρ)→ S(~τ))

(S(~τ)→ S(~σ))× (S(~σ)→ S(~τ))

Ψ1

?

− ◦ S(~u)
- (S(~τ)→ S(~ρ))× (S(~ρ)→ S(~τ))

Ψ2

?

commutes since for all a : S(~τ) → S(~σ) and b : S(~σ) → S(~τ), it holds that
Ψ1(a, b) ◦ S(~u)

= i−1
S(~τ) ◦ T (~v, a, b) ◦ iS(~σ) ◦ i−1

S(~σ) ◦ T (~u, S(~u)) ◦ iS(~ρ)

= i−1
S(~τ) ◦ T (~v ◦ ~u, (a, b) ◦ S(~u)) ◦ iS(~ρ)

= Ψ2((a, b) ◦ S(~u)).
Moreover, because Π1S(~u) is strict, the program

− ◦ S(~u) := λ(a, b).(Π1S(~u) ◦ a, b ◦Π2S(~u))

is strict. Therefore, by Plotkin’s uniformity Lemma 4.1, we have

fix(Ψ2) = fix(Ψ1) ◦ S(~u)

i.e., S(~v) ◦ S(~u) = S(~v ◦ ~u).

Theorem 4.9. (Operational minimal invariance for realisable functors)
Let T : (FPC!

δ)n+1 → FPC!
δ be a realisable functor and ~σ ∈ (FPC!

δ)n. As
usual, we write S(~σ) for µX.T (~σ,X). Then the least FPC!

δ-endomorphism

e : S(~σ)→ S(~σ)

Jung, 1994).

22

for which the following commutes

S(~σ)
e - S(~σ)

T (~σ, S(~σ))

iS(~σ)

?

T (id~σ, e)
- T (~σ, S(~σ))

iS(~σ)

?

must be the identity morphism 〈idS(~σ), idS(~σ)〉. Moreover, the identity is the only
such endomorphism. Consequently, S preserves identity morphisms, i.e.,

S(〈id~σ, id~σ〉) = 〈idS(~σ), idS(~σ)〉.

5 Operational minimal invariance

In this section, we give an operational proof of the minimal invariance theorem
stated in the previous section. For this purpose, we do not assume that type
expressions preserve identity morphisms. However, we have seen that they do
preserve composition of morphisms and for convenience we call these categor-
ical gadgets that arises out of FPC type expressions realisable semi-functors
(because they just fall short of being identity-preserving).

More precisely, given a type-in-context Θ ` τ , the operator TΘ`τ as defined
in the previous section is called the realisable semi-functor associated to Θ ` τ .
Notice that such a definition serves a very transient purpose since we shall no
longer need it once the operational minimal invariance theorem is established
by the end of this section.

5.1 Twin morphisms

First, we need the following definition:

Definition 5.1. An FPC!
δ-morphism is said to be twin if it is of the form

u : σ � σ : u,

i.e., u− = u+ = u.

The following lemma guarantees that twins are preserved by realisable semi-
functors.

Lemma 5.2. Let ~X ` τ be a type-in-context and T ~X`τ as defined in the con-
struction. Then for any ~σ ∈ (FPC!

δ)n and for any sequence of twin morphisms
~u ∈ (FPC!

δ)n(~σ, ~σ) (i.e., ui : σi � σi : ui (i = 1, . . . , n)), the morphism T (~u)
is again twin.

In particular, if T : (FPC!
δ)n+1 → FPC!

δ is a realisable semi-functor
and ~σ ∈ (FPC!

δ)n and S(~σ) is, as usual, µX.T (~σ,X), then the least FPC!
δ-

endomorphism
e : S(~σ)→ S(~σ)

23

for which the following commutes

S(~σ)
e - S(~σ)

T (~σ, S(~σ))

iS(~σ)

?

T (id~σ, e)
- T (~σ, S(~σ))

iS(~σ)

?

is twin.

Proof. By induction on the structure of ~X ` σ.
The only interesting case is the recursive type ~X ` µX.τ which we prove be-
low. Let ~X,X ` σ be given. We want to prove that for every twin morphism
~u ∈ (FPC!

δ)n(~σ, ~σ), it holds that S ~X`µX.τ (~u) is again twin. By definition,
S ~X`µX.τ (~u) is the least t : S(~σ)→ S(~σ) such that the diagram

S(~σ)
t - S(~σ)

T (~σ, S(~σ))

iS(~σ)

?

T (~u, t)
- T (~σ, S(~σ))

iS(~σ)

?

commutes. Here we denote 〈fold,unfold〉 by i. Let φ := λt.i−1 ◦ T (~u, t) ◦ i.
Then on one hand, by the definition of S(~u), we have t = fix(φ). On the other
hand, fix(φ) =

⊔
n φ

(n)(⊥,⊥) by rational completeness. A further induction on
n then shows that φ(n)(⊥,⊥) is twin for every n ∈ N. The proof is easy. For
n = 0, we have the trivial twin (⊥,⊥). For the inductive step, it follows from
the two induction hypotheses that φ(n+1)(⊥,⊥) = i−1◦T (~u, φ(n)(⊥,⊥))◦i must
be twin. Finally, by taking the first and second projections, one easily has that
fix(φ) is twin and the proof is complete.

The above lemma ensures that the action of realisable semi-functors on iden-
tity morphisms in the diagonal category FPC!

δ (i.e., pair of identities on closed
types) is again a pair of equal morphisms, i.e., twin.

Although we have yet shown that realisable semi-functors preserve identity
morphisms, we do have the following result.

Lemma 5.3. For every type-in-context Θ ` τ , the realisable semi-functor TΘ`τ
associated to it satisfies the following property:
For every sequence of closed types ~σ, it holds that

TΘ`τ (id~σ : ~σ � ~σ : id~σ) v (idTΘ`τ (~σ), idTΘ`τ (~σ)).

Proof. By a straightforward induction on the structure of Θ ` σ.

24

5.2 Canonical unfolding of FPC closed types

We introduce here a technical jargon that will enable a fluent discourse later.

Definition 5.4. Recall that a type-in-context of the form Θ ` µX.σ is termed
as recursive. If there is no confusion, we conveniently drop the context Θ and say
that the type expression µX.σ is recursive. A type-in-context (or simply type
expression) Θ ` σ is µ-free if σ does not contain any recursive sub-expressions.

Examples 5.5. 1. Y ` µX.X+Y and ∅ ` µY.µZ.Y → Z are recursive type
expressions while Y ` (µX.X + Y)→ (µY.µZ.Y → Z) is not.

2. X,Y, Z ` X + (Y → Z) and X,Y, Z ` (X → Y) → Z are µ-free while
Y ` µX.X + Y and X ` X × µY.(X + Y) are not.

Definition 5.6. A recursive subexpression Θ ` µX.σ of a type expression
Θ, ~X ` τ is said to be recursively maximal in τ if it is not a subexpression of
any recursive subexpression of Θ, ~X ` τ .

Example 5.7. Consider the type expression τ := X,Y ` (µU.(U × X)) →
(µZ.µW.Y → (Z +W)). Then both µU.(U ×X) and µZ.µW.Y → (Z +W) are
recursively maximal in τ while µW.Y → (Z +W) is not.

For a closed FPC type τ0, we perform the so-called canonical unfolding which
is a certain procedure of generating some new closed types associated to it. We
describe this unfolding below:

1. (i) If τ0 is recursive, i.e., it is of the form µX0.σ, then define τ1 :=
σ[τ0/X0]. Note that when we replace in every occurrence of X0 the
symbol τ0, we do not replace τ0 by µX0.σ any more. Thus once we
have completed the replacement, we do not look into variable X0 in
τ0 again.

(ii) Otherwise τ0 is not recursive. Then there exists a unique µ-free type-
in-context X1, . . . , Xn ` ρ where Xi’s are the bound type variables
of subexpressions µXi.σi recursively maximal in τ0 such that

τ0 ≡ ρ[τ1/X1, . . . , τn/Xn]

where each τi stands for µXi.σi. As in (i), once the type variables
have been substituted for the symbols τi’s, the type variables Xi’s
are not looked into any more.

2. For each τi’s (i = 1, . . . , n), stop the procedure if there are no more type
variables. Otherwise, repeat for each τi’s the above steps.

Definition 5.8. For any given closed FPC type τ0, we call all the τj ’s generated
from it via the above procedure its associates.

It is time for an example:

Example 5.9. Consider the τ0 := (µU.µV.(U × V))→ (µX.X + µY.(Y +X)).

(1) The µ-free type in context is A,B ` A→ B.
Define τ1 = µU.µV.(U × V) and τ2 := µX.X + µY.(Y +X).
So τ0 = τ1 → τ2.

25

(2) For τ1, define τ3 := µV.(τ1 × V).

(3) For τ3, define τ4 := τ1 × τ3.

(4) For τ2, define τ5 := τ2 + µY.(Y + τ2).

(5) For τ5, define τ6 := µY.(Y + τ2).

(6) For τ6, define τ7 := τ6 + τ2.

As long as the type variables are not ‘exhausted’, we can record the procedure
by associating (denoted by ;) a closed type with either (a) its single unfolding
(if it is a recursive closed type) or (b) its first µ-free decomposition (if it is not
µ-free). This is presented by the following system of ‘equations’:

τ0 ; (τ1 → τ2)
τ1 ; τ3

τ3 ; τ4

τ4 ; (τ1 × τ3)
τ2 ; τ5

τ5 ; (τ2 + τ6)
τ6 ; τ7

τ7 ; (τ6 + τ2)

We now establish a useful lemma.

Lemma 5.10. Let τ0 be a closed FPC type. Then there is a unique (up to
renaming) set of associates of τ0, denoted by τj’s (j = 1, 2, . . . ,m). Moreover,
the system of ‘equations’ presented by these associates has a finite number of
‘equations’, each of which is in exactly one of the following forms:

τj ≡ µXj .σj ; σj [τj/Xj] ≡ τj′

arising from the single unfolding of a recursive type τj, or

τj ; ρ[~τjk/ ~Xk]

for some unique µ-free type-in-context ρ and τjk’s are all recursive types, where
τj is not recursive and ; is actually a syntactic equality.

Proof. By a simple induction on the number of type variables Xi’s appearing
in a closed FPC type, i.e., the number of µXi’s appearing in it.

5.3 Canonical pre-deflations and deflations

In this subsection, we define two type-indexed families of endofunctions instru-
mental in the operational proof of the minimal invariance property.

Definition 5.11. A pre-deflation on a type σ is an element of type (σ → σ)
that is (i) idempotent and (ii) below the identity. A deflation on a type σ is
a pre-deflation with the additional property of having a finite image modulo
contextual equivalence.

26

A rational pre-deflationary (resp. deflationary) structure on a closed FPC
type σ is a rational chain idσn of idempotent pre-deflations (resp. deflations)
with

⊔
n idσn = idσ.

Note that every type has a trivial pre-deflationary structure, given by the
constantly identity chain.

In what follows, we define for each type, in parallel, a non-trivial pre-
deflationary structure and a deflationary structure.

Recall that we define the vertical natural numbers ω (cf. Subsection 2.4)
by ω = µX.X⊥. Using ω, we first define the programs e : ω → (σ → σ) by
induction on σ as follows:

eσ×τ (n)(p) = (eσ(n)(fst(p)), eτ (n)(snd(p)))
eσ+τ (n)(z) = case(z) of inl(x).eσ(n)(x) or inr(y).eτ (n)(y)
eσ⊥(n)(z) = case(z) of up(x).up(eσ(n)(x))

eσ→τ (n)(f) = eτ (n) ◦ f ◦ eσ(n)

and for the recursive type µX.σ, the program eµX.σ(n) is defined as follows.

Let S : Cδ → Cδ be the realisable functor associated to the type-in-context
X ` σ. By Lemma 5.2, we may abuse notation by writing Π2S(eµX.σ(n), eµX.σ(n))
as S(eµX.σ(n)). Define

eµX.σ(n)(x) := if (n > 0) then fold ◦ S(eµX.σ(n− 1)) ◦ unfold(x).

Then eµX.σ satisfies the following equations:

eµX.σ(0) = ⊥µX.σ→µX.σ
eµX.σ(n+ 1) = fold ◦ S(eµX.σ(n)) ◦ unfold.

Relying on ω again, we next define the programs dσ : ω → (σ → σ) by
induction on σ as follows:

dσ×τ (n)(p) = (dσ(n)(fst(p)),dτ (n)(snd(p)))
dσ+τ (n)(z) = case(z) of inl(x).dσ(n)(x) or inr(y).dτ (n)(y)
dσ⊥(n)(z) = case(z) of up(x).up(dσ(n)(x))

dσ→τ (n)(f) = dτ (n) ◦ f ◦ dσ(n)

and for the recursive type µX.σ, the program eµX.σ(n) is defined as follows:

dµX.σ(n) := if n > 0 then fold ◦ dσ[µX.σ/X](n− 1) ◦ unfold.

At the first glance, it looks as if the definition of dµX.σ is not recursive one,
i.e., in the sense that it is of the form fix(t) for some term t since it involves the
type-index σ[µX.σ/X] in the right hand term. However, by finitely unfolding
µX.σ in obtaining its (unique) finite set of associates as in Lemma 5.10, it turns
out that dµX.σ can indeed be defined via a finite system of mutual recursions.
We make this precise here:

Lemma 5.12. Let τ0 ≡ µX.σ be a given recursive closed type. Then the above
dµX.σ(n) can be defined by a finite system of mutual recursion, where the first

27

equation is given by

dτ0(n) = if n > 0 then fold ◦ dτ1(n) ◦ unfold, τ1 ≡ σ[τ0/X]

and the remaining equations, each indexed by the associates of τ0 obtained via
the canonical unfolding, are either of the form

dτj (n) = if n > 0 then fold ◦ dτj [σj/Xj](n− 1) ◦ unfold

arising from unfolding of a recursive type τj ≡ µXj .σj, or

dτj (n) = if n > 0 then ρ[~dτjk(n)]

for a unique µ-free type-in-context ρ so that τjk’s are recursive and are associates
of τ0, this case arising from a non-recursive τj.

Proof. This is a direct consequence of Lemma 5.10 and the definition of dµX.σ.

At this juncture, an example should serve good pedagogical purpose:

Example 5.13. Let τ0 := (µU.µV.(U × V))→ (µX.X + µY.(Y +X)).
We write down the following system of equations which arise from the definition
of dτ0 as follows:

dτ0(n) = λf.dτ2(n) ◦ f ◦ dτ1(n)
dτ1(n) = fold ◦ dτ3(n− 1) ◦ unfold
dτ3(n) = fold ◦ dτ4(n− 1) ◦ unfold
dτ4(n) = (dτ1(n),dτ3(n))
dτ2(n) = fold ◦ dτ5(n− 1) ◦ unfold
dτ5(n) = case(z) of inl(x).dτ2(n)(x) or inr(y).dτ6(n)(y)
dτ6(n) = fold ◦ dτ7(n− 1) ◦ unfold
dτ7(n) = case(z) of inl(x).dτ6(n)(x) or inr(y).dτ2(n)(y)

Proposition 5.14. For any closed recursive type µX.σ, it holds that

dµX.σ(∞) = fold ◦ dσ[µX.σ/X](∞) ◦ unfold.

Proof. Obvious since ∞ =ω ∞− 1.

We now establish the order-theoretic relation between the families of func-
tions dσ and eσ as follows:

Theorem 5.15. For every n ∈ ω, for every closed FPC types σ, it holds that

dσ(n) v eσ(n) v idσ

where v is the contextual preorder on (σ → σ).

Proof. For the base case n = 0, we proceed by induction on the structure of
closed types as follows. For convenience, we just verify the case for sum types
as follows:

28

(Sum type) σ + τ :
By definition,

dσ+τ (0)(z) = case(z) of inl(x).dσ(0)(x) or inr(y).dτ (0)(y) (defn. of dσ+τ)
v case(z) of inl(x).eσ(0)(x) or inr(y).eτ (0)(y) (Ind. hyp.

& Fig. 5 (6))
= eσ+τ (0) (defn. of eσ+τ)
v idσ+τ (Ind. hyp.).

The other non-recursive types are proven similarly relying on the extensionality
properties.
Now we focus on the recursive types:
(Recursive type) µX.σ:
From the recursive clauses in the definitions of dµX.σ and eµX.σ, it follows im-
mediately that

dµX.σ(0) = ⊥µX.σ→µX.σ = eµX.σ(0) v idµX.σ.

So the base case for n = 0 is established.
Assuming that there is a k ∈ N such that for all n ≤ k, the following always
holds:

For all closed types σ, dσ(n) v eσ(n) v idσ.

We want to show that

For all closed types σ, dσ(k + 1) v eσ(k + 1) v idσ.

Again, we proceed by induction on the structure of types.
We show one case of non-recursive type, e.g., the product type. For this purpose,
we assume σ = σ1 × σ2.
Note that dσ(k + 1) = (dσ1(k + 1),dσ2(k + 1)). By induction hypotheses, since
dσ1(k + 1) v eσ1(k + 1) v idσ1 and dσ2(k + 1) v eσ2(k + 1) v idσ2 , it follows
that

dσ(k + 1) = (dσ1(k + 1),dσ2(k + 1))
v (eσ1(k + 1), eσ2(k + 1))
v eσ(k + 1)

and similarly,

eσ(k + 1) = (eσ1(k + 1), eσ2(k + 1))
v (idσ1 , idσ2)
v idσ.

The rest of the non-recursive types are just as easy and thus omitted.
We now turn to the recursive type. For this case, we suppose that σ = µX.τ

for some type-in-context X ` τ . To proceed with the proof by induction on the
structure of τ .
Case I(1): Type variable.
This case concerns τ = X.

29

The proof is straightforward as follows:

dµX.X(k + 1) = fold ◦ dµX.X(k) ◦ unfold (defn. of dµX.X)
v fold ◦ eµX.X(k) ◦ unfold (Ind. hyp.)
= eµX.X(k + 1) (defn. of eµX.X)

Case I(2): Product type.
This case concerns τ = τ1 × τ2.
The proof proceeds as follows:

dµX.τ (k + 1) = dµX.τ1×τ2(k + 1)
= fold ◦ d(τ1×τ2)[τ/X](k) ◦ unfold (defn. of dµX.τ1×τ2)
= fold ◦ (dτ1[τ/X](k),dτ2[τ/X](k)) ◦ unfold (defn. of d(τ1×τ2)[τ/X])
v fold ◦ (eτ1[τ/X](k), eτ2[τ/X](k)) ◦ unfold (Ind. hyp.)
= fold ◦ e(τ1×τ2)[τ/X](k) ◦ unfold (defn. of e(τ1×τ2)[τ/X])
= eµX.τ (k + 1)

So similarly, one can easily establish that the statement holds for the rest of the
non-recursive cases.
Case II: Recursive type.
This case concerns τ = µY.ρ. Without loss of generality, it can be assumed that
ρ is not recursive. (Otherwise, apply the same reasoning that follows to the
type τ = µY1.µY2. . . . µYm.ρ

′ where ρ′ is not recursive.)
To show that

dµX.µY.ρ(k + 1) v eµX.µY.ρ(k + 1)

it will be sufficient if we can establish

dµY.ρ[τ0/X](k) v SX`µY.ρ(eτ0(k))

where τ0 := µX.µY.ρ.
To this end, we first prove that

dµY.ρ[τ0/X](k) v SX`µY.ρ(dτ0(k))

Then either X,Y ` ρ is µ-free or it is not.
Assume thatX,Y ` ρ is µ-free. Define τ1 := µY.ρ[τ0/X] and τ2 := ρ[τ0/X, τ1/X].
Since X,Y ` ρ is µ-free, it follows that

dρ[τ0/X,τ1/Y](k − 1) = RX,Y `ρ(dτ0(k − 1),dτ1(k − 1)).

Because τ1 = µY.ρ[τ0/X], by unfolding k − 1 times, we have the following
nestings:

R(dτ0(k−1), fold◦R(dτ0(k−2), . . . , fold◦R(dτ0(0),dτ1(0))◦unfold)◦unfold) . . .◦unfold)

where R := RX,Y `ρ. By monotonicity of realisable semi-functors and extension-
ality properties, it follows from dτ0(j) v dτ0(k) (j = 0, 1, . . . , k − 2) that the
above term must be below

s := R(dτ0(k), fold◦R(dτ0(k), . . . , fold◦R(dτ0(0),dτ1(0))◦unfold)◦unfold) . . .◦unfold)

30

with respect to the contextual pre-order. Thus,

fold ◦ dρ[τ0/X,τ1/Y](k − 1) ◦ unfold v fold ◦ s ◦ unfold v
⊔
j≥0

Φj(dτ1(0))

where Φ := λu.fold ◦R(dτ0(k), u) ◦ unfold. Consequently, we have

dµY.ρ[τ0/X](k) v SX`µY.ρ(dτ0(k)).

It now remains to settle the case when X,Y ` ρ is not µ-free. Since we have
assumed that ρ is not recursive, by Lemma 5.12 there exist a unique µ-free type
expression ~X,X, Y ` δ (with corresponding realisable functor denoted by D)
and recursive types αi := µXi.βi (where each βj may or may not contain τ0, τ1
as a subexpression) such that

dρ[τ0/X,τ1/X](k − 1) = D(dα1(k − 1), . . . ,dαn(k − 1),dτ0(k − 1),dτ1(k − 1)).

By induction hypothesis, we may assume that dαj (k − 1) v idαj for all j =
1, . . . , n. SinceD is monotone andD ~X,X,Y `ρ(idα1 , . . . , idαn , X, Y) = RX,Y `ρ(X,Y),
it holds that

dρ[τ0/X,τ1/X](k − 1) v RX,Y `ρ(dτ0(k − 1),dτ1(k − 1)).

Using the same argument as in the previous case, one deduces by transitivity of
v that

dµY.ρ[τ0/X](k) v SX`µY.ρ(dτ0(k)),

noting that this argument does not depend on whether the semi-functor RX,Y `ρ
is µ-free (in fact, it is not).

To complete the proof, we apply the monotonicity of the realisable functor
SX`µY.ρ and the induction hypothesis that dτ0(k) v eτ0(k) v idτ0 to obtain the
desired result:

dµX.µY.ρ(k) v fold ◦ SX`µY.ρ(dτ0(k)) ◦ unfold
v fold ◦ SX`µY.ρ(eτ0(k)) ◦ unfold
v fold ◦ SX`µY.ρ(idτ0) ◦ unfold
v fold ◦ idµY.ρ[τ0/X] ◦ unfold
v idµX.µY.ρ.

where the fourth inequality holds by virtue of Lemma 5.3.

5.4 Compilation and canonical deflationary structure

The focus of this subsection is to prove that the family dσ (defined in Subsec-
tion 5.3) induces a canonical deflationary structure on each closed FPC type σ.
This means that in addition to showing that for each n ∈ ω and n < ω,

1. dσ(n) is idempotent,

2. dσ(n) v idσ and

3. dσ(n) has finite image modulo contextual equivalence,

31

we must prove that
dσ(∞) = idσ.

As a consequence of this theorem and the preceding Theorem 5.15, we have
that

dσ(∞) = eσ(∞) = idσ

and this is crucial in establishing the operational minimal invariance theorem,
as we shall explain later.

The following proposition is easy to establish:

Lemma 5.16. For any closed FPC type σ and for each n ∈ ω and n < ω, the
following holds for dσ(n):

1. is idempotent,

2. v idσ and

3. has finite image modulo contextual equivalence.

In addition, dσ(∞) satisfies (1) and (2).

Proof. Note that (2) is a consequence of Theorem 5.15. (1) and (3) can be
established by induction on the structure of closed type σ. In particular, (1) is
straightforward. For (3), the interesting bit lies in the recursive type. In order to
show that dµX.σ(n) has finite image modulo contextual equivalence, one invokes
Lemma 5.12 to define dµX.σ(n) in terms of the deflations on the associates of
µX.σ (via mutual recursion) and then uses the induction hypothesis that all
these associated deflations have finite image modulo contextual equivalence.

In order to prove that dσ does indeed define a deflationary structure on
each closed FPC type σ, we make essential use of the compilation of terms and
contexts. These technical consideration first appeared in Birkedal & Harper’s
work (See Theorem 3.66 of (Birkedal and Harper, 1999)) in their operational
proof of the ‘syntactic minimal invariance’ in the form of a certain compilation
relation ⇒.

In this section, we define and prove several elementary properties regarding
this relation.

The compilation relation on Expσ(Γ) is defined by induction on the deriva-
tion of Γ ` t : σ, given by the axioms and rules in Figure 9.

The compilation relation ⇒ turns out to be a function.

Proposition 5.17. If Γ ` t : σ, then Γ ` t : σ ⇒ |t| for some unique |t| ∈
Expσ(Γ).

Proof. By induction on the derivation of Γ ` t : σ.

Lemma 5.18. If Γ ` t : σ ⇒ |t|, then Γ ` dσ(∞)(|t|) =σ |t|.

Proof. By induction on the derivation of Γ ` t : σ ⇒ |t|.
The cases for (⇒ var), (⇒ pair), (⇒ inl), (⇒ inr), (⇒ abs), (⇒ up) and (⇒
fold) rely on the idempotence of d(∞) (cf. Lemma 5.16) without having to
invoke the induction hypothesis. We show the case for (⇒ var) here.
Given that Γ ` x : σ ⇒ |x|. By definition, |x| = dσ(∞)(x). We are to show
that Γ ` dσ(∞)|x| = |x|. But this follows from the idempotence of dσ(∞), i.e.,

32

Γ ` x : σ ⇒ dσ(∞)(x)(if x ∈ dom(Γ)) (⇒ var)

Γ ` s : σ ⇒ |s| Γ ` t : τ ⇒ |t|
Γ ` (s, t) : σ × τ ⇒ dσ×τ (∞)(|s|, |t|) (⇒ pair)

Γ ` p : σ × τ ⇒ |p|
Γ ` fst(p) : σ ⇒ fst(|p|) (⇒ fst)

Γ ` p : σ × τ ⇒ |p|
Γ ` snd(p) : τ ⇒ snd(|p|) (⇒ snd)

Γ ` s : σ ⇒ |s|
Γ ` inl(s) : σ + τ ⇒ dσ+τ (∞)(inl(|s|)) (⇒ inl)

Γ ` s : τ ⇒ |s|
Γ ` inr(s) : σ + τ ⇒ dσ+τ (∞)(inr(|s|)) (⇒ inl)

Γ ` s : σ + τ ⇒ |s| Γ, x : σ ` t1 : ρ⇒ |t1| Γ, y : τ ` t2 : ρ⇒ |t2|
Γ ` case(s) of inl(x).t1 or inr(y).t2 : ρ⇒ case(|s|) of inl(x).|t1| or inr(y).|t2|

(⇒ case)

Γ ` s : σ → τ ⇒ |s| Γ ` t : σ ⇒ |t|
Γ ` s(t) : τ ⇒ |s|(|t|) (⇒ app)

Γ, x : σ ` t : τ ⇒ |t|
Γ ` λxσ.t : σ → τ ⇒ dσ→τ (∞)(λx.|t|) (⇒ abs)

Γ ` t : σ ⇒ |t|
Γ ` up(t) : σ⊥ ⇒ dσ⊥(∞)(|t|) (⇒ up)

Γ ` s : σ⊥ ⇒ |s| Γ, x : σ ` t : ρ⇒ |t|
Γ ` case(s) of up(x).t : ρ⇒ case(|s|) of up(x).|t| (⇒ case up)

Γ ` t : µX.σ ⇒ |t|
Γ ` unfold(t) : σ[µX.σ/X]⇒ unfold(|t|) (⇒ unfold)

Γ ` t : σ[µX.σ/X]⇒ |t|
Γ ` fold(t) : µX.σ ⇒ dµX.σ(∞)(fold(|t|)) (⇒ fold)

Figure 9: Definition of Γ ` t : σ ⇒ |t|

33

Γ ` dσ(∞)|x| =σ dσ(dσ(x)) =σ dσ(x) = |x|.
The rest of the cases are fairly routine except for the case (⇒ unfold) which we
now show.
Let Γ ` unfold(t) : σ[µX.σ/X]⇒ |unfold(t)| be given. We must show that

Γ ` dσ[µX.σ/X](∞)|unfold(t)| =σ[µX.σ/X] |unfold(t)|.

The inference rule (⇒ unfold)

Γ ` t : µX.σ ⇒ |t|
Γ ` unfold(t) : σ[µX.σ/X]⇒ unfold(|t|)

guarantees that |unfold(t)| ≡ unfold(|t|). The induction hypothesis asserts that
Γ ` dµX.σ(|t|) =µX.σ |t|. It then follows that

Γ ` dσ[µX.σ/X](∞)|unfold(t)|
≡ dσ[µX.σ/X](∞)(unfold(|t|))
= unfold ◦ dµX.σ(∞)(|t|) (def. of dµX.σ(∞))
= unfold(|t|) (Ind. hyp.)
= |unfold(t)|.

Lemma 5.19. If Γ ` t : σ ⇒ |t|, then Γ ` |t| vσ t.

Proof. By induction on Γ ` t : σ ⇒ |t|, using the previous lemma.

5.5 Compilation of a context

One last technical gadget is to compile a context C[−σ] ∈ Ctxτ (Γ). For a given
context C[−σ] ∈ Ctxτ (Γ), we define a compiled context |C|[−σ] ∈ Ctxτ (Γ) using
the axioms and rules similar to those for defining Γ ` t : σ ⇒ |t|. The axioms
and rules for defining |C| is given in Figure 10.

Lemma 5.20. If Γ ` t : σ ⇒ |t| and C[−σ] ∈ Ctx(Γ), then

Γ ` |C[t]| =τ |C|[|t|].

Proof. By induction on the structure of C[−σ].

Lemma 5.21. Let C[−σ] ∈ Ctxτ (Γ) and t ∈ Expσ. Then

|C|[t] vτ C[t].

Proof. By induction on the structure of C[−σ].

5.6 A crucial lemma

Lemma 5.22.

(∅ ` t : σ ⇒ |t| ∧ t ⇓ v) =⇒ ∅ ` |t| =σ |v|.

Proof. By induction on the derivation of t ⇓ v.

34

Γ ` −σ ⇒ dσ(∞)(−σ) (⇒ par)

Γ ` x : σ ⇒ dσ(∞)(x)(if x ∈ dom(Γ)) (⇒ var)

Γ ` S : σ ⇒ |S| Γ ` T : τ ⇒ |T |
Γ ` (S, T) : σ × τ ⇒ dσ×τ (∞)(|S|, |T |) (⇒ pair)

Γ ` P : σ × τ ⇒ |P |
Γ ` fst(P) : σ ⇒ fst(|P |) (⇒ fst)

Γ ` P : σ × τ ⇒ |P |
Γ ` snd(P) : τ ⇒ snd(|P |) (⇒ snd)

Γ ` S : σ ⇒ |S|
Γ ` inl(S) : σ + τ ⇒ dσ+τ (∞)(inl(|S|)) (⇒ inl)

Γ ` S : τ ⇒ |S|
Γ ` inr(S) : σ + τ ⇒ dσ+τ (∞)(inr(|S|)) (⇒ inl)

Γ ` S : σ + τ ⇒ |S| Γ, x : σ ` T1 : ρ⇒ |T1| Γ, y : τ ` T2 : ρ⇒ |T2|
Γ ` case(S) of inl(x).T1 or inr(y).T2 : ρ⇒ case(|S|) of inl(x).|T1| or inr(y).|T2|

(⇒ case)

Γ ` S : σ → τ ⇒ |S| Γ ` T : σ ⇒ |T |
Γ ` S(T) : τ ⇒ |S|(|T |) (⇒ app)

Γ, x : σ ` T : τ ⇒ |T |
Γ ` λxσ.T : σ → τ ⇒ dσ→τ (∞)(λx.|T |) (⇒ abs)

Γ ` T : σ ⇒ |T |
Γ ` up(T) : σ⊥ ⇒ dσ⊥(∞)(|T |) (⇒ up)

Γ ` S : σ⊥ ⇒ |S| Γ, x : σ ` T : ρ⇒ |T |
Γ ` case(S) of up(x).T : ρ⇒ case(|S|) of up(x).|T | (⇒ case up)

Γ ` T : µX.σ ⇒ |T |
Γ ` unfold(T) : σ[µX.σ/X]⇒ unfold(|T |) (⇒ unfold)

Γ ` T : σ[µX.σ/X]⇒ |T |
Γ ` fold(T) : µX.σ ⇒ dµX.σ(∞)(fold(|T |)) (⇒ fold)

Figure 10: Definition of Γ ` C[−σ] : τ ⇒ |C|[−σ]

35

(1) (⇓ can): Trivial.

(2) (⇓ fst,snd):
Given that ∅ ` fst(p) : σ ⇒ |fst(p)| and fst(p) ⇓ v. We must show that
∅ ` |fst(p)| = |v|. The premise of the only evaluation rule (⇓ fst) which
matches fst(p) ⇓ v consists of

p ⇓ (s, t) s ⇓ v.

The induction hypothesis asserts that ∅ ` |p| =σ×τ |(s, t)| and ∅ ` |s| =σ

|v|. Based on these, one deduces that

∅ ` |fst(p)| ≡ fst(|p|) (def. of |fst(p)|)
=σ fst(|(s, t)|) (Ind. hyp.)
=σ fst(dσ(∞)(|s|),dτ (∞)(|t|)) (def. of |(s, t)|)
=σ dσ(∞)(|s|) (β-rule)
=σ |s| (Lemma 5.18)
=σ |v|. (Ind. hyp.)

The case for (⇓ snd) is similar.

(3) (⇓ app):
Given that ∅ ` s(t)⇒ |s(t)| and s(t) ⇓ v. We must show that ∅ ` |s(t)| =τ

|v|. The only derivation of s(t) ⇓ v is via an application of the evaluation
rule (⇓ app) whose premise is given by

s ⇓ λx.r r[t/x] ⇓ v.

The induction hypothesis asserts that ∅ ` |s| =σ→τ |λx.r| and ∅ `
r[t/x] =σ |v|. Then the desired result follows from:

∅ ` |s(t)| ≡ |s|(|t|) (def. of |s(t)|)
=τ |λx.r|(|t|) (Ind. hyp.)
≡ (dσ→τ (∞)(λx.|r|))(|t|) (def. of |λx.r|)
≡ (λx.dτ (∞) ◦ |r| ◦ dσ(∞))(|t|) (def. of dσ→τ)
=τ (λx.dτ (∞) ◦ |r|)(dσ(∞)(|t|))
=τ (λx.dτ (∞) ◦ |r|)(|t|) (Lemma 5.18)
=τ dτ (∞)(|r|[|t|/x]) (β-rule)
=τ dτ (∞)(|r[t/x]|) (Lemma 5.20)
=τ dτ (∞)(|v|) (Ind. hyp.)
=τ |v|. (Lemma 5.18)

(4) (⇓ case):
Given that

∅ ` case(s) of inl(x).t1 or inr(y).t2 ⇒ |case(s) of inl(x).t1 or inr(y).t2|

and case(s) of inl(x).t1 or inr(y).t2 ⇓ v. We want to prove that

∅ ` |case(s) of inl(x).t1 or inr(y).t2| =ρ |v|.

W.l.o.g., let us assume that the following evaluation rule (⇓ case inl) de-

36

rives the given evaluation:

s ⇓ inl(t) t1[t/x] ⇓ v
case(s) of inl(x).t1 or inr(y).t2 ⇓ v

.

The induction hypothesis asserts that

∅ ` |s| =σ+τ |inl(t)| and ∅ ` |t1[t/x]| ⇓ v.

It then follows that

∅ ` |case(s) of inl(x).t1 or inr(y).t2|
≡ case(|s|) of inl(x).|t1| or inr(y).|t2| (by def.)
=ρ case(inl(|t|)) of inl(x).|t1| or inr(y).|t2| (Ind. hyp.)
=ρ |t1|[|t|/x] (Kleene equivalence)
=ρ |t1[t/x]| (Lemma 5.20)
=ρ |v|. (Ind. hyp.)

(5) (⇓ case up):
Given that ∅ ` case(s) of up(x).t⇒ |case(s) of up(x).t| and
case(s) of up(x).t ⇓ v. We want to prove that

∅ ` |case(s) of up(x).t| =ρ |v|.

The premise of the evaluation rule which derives case(s) of up(x).t ⇓ v
consists of

s ⇓ up(t′) t[t′/x] ⇓ v.

The induction hypothesis asserts that

|s| =σ⊥ |up(t′)| and |t[t′/x]| =ρ |v|.

The desired result then follows from

∅ ` |case(s) of up(x).t|
≡ case(|s|) of up(x).|t| (def. of |case(s) of up(x).t|)
=ρ case(|up(t′)|) of up(x).|t| (Ind. hyp.)
=ρ case(up(|t′|)) of up(x).|t| (def. of |up(t′)|)
=ρ |t|[|t′|/x] (Kleene equivalence)
=ρ |t[t′/x]| (Lemma 5.20)
=ρ |v|. (Ind. hyp.)

(6) (⇓ unfold):
Given that ∅ ` unfold(t) ⇒ |unfold(t)| and unfold(t) ⇓ v. We must show
that

∅ ` |unfold(t)| =σ[µX.σ/X] |v|.

The premise of the evaluation rule which derives unfold(t) ⇓ v consists of

t ⇓ fold(s) s ⇓ v.

37

The induction hypothesis asserts that

∅ ` |t| =µX.σ |fold(s)| and ∅ ` |s| =σ[µX.σ/X] |v|.

The desired result follows from

∅ ` |unfold(t)|
≡ unfold(|t|) (def. of |unfold(t)|)
=σ[µX.σ/X] unfold(|fold(s)|) (Ind. hyp.)
≡ unfold(dµX.σ(∞)(fold(|s|))) (def. of |fold(s)|)
=σ[µX.σ/X] unfold ◦ fold ◦ dσ[µX.σ/X](∞)(|s|) (Proposition 5.14)
=σ[µX.σ/X] unfold(fold(|s|)) (Lemma 5.18)
=σ[µX.σ/X] |s| (β-rule)
=σ[µX.σ/X] |v|. (Ind. hyp.)

5.7 Proof of functoriality

We are now ready to present an operational proof of Lemma 4.9.

Lemma 5.23. Let f, g ∈ ExpµX.σ→µX.σ be given. Suppose that for all t ∈
Expσ[µX.σ/X] and for all contexts of the form C[−µX.σ→µX.σ(fold(t))] ∈ CtxΣ

it holds that
C[f(fold(t))] vΣ C[g(fold(t))].

Then f vµX.σ→µX.σ g.

Proof. By the extensionality property (16), in order to prove that f v g, it
suffices to prove that for all s ∈ ExpµX.σ, f(s) vµX.σ g(s) holds. Let s ∈
ExpµX.σ be given and suppose C[−µX.σ] ∈ CtxΣ is such that C[f(s)] ⇓ >.
Because of η-rule, it follows from the definition of v that

C[f(s)] ⇓ > ⇐⇒ C[f(fold(unfold(s)))] ⇓ >.

Thus by assumption that C[f(fold(t))] vΣ C[g(fold(t))] for all t ∈ Expσ[µX.σ/X],
it follows (by defining t := unfold(s)) that C[g(fold(unfold(s)))] ⇓ >. Again
invoking η-rule and the definition of v, we have that C[g(s)] ⇓ >, as required.

Lemma 5.24. For any type-in-context of the form X ` σ, we have

∅ ` idµX.σ v dµX.σ(∞).

Proof. By Lemma 5.23, it suffices to show that for any t ∈ Expσ[µX.σ/X] and
for any context C[−µX.σ→µX.σ(fold(t))] ∈ CtxΣ, it holds that

C[idµX.σ(fold(t))] vΣ C[dµX.σ(∞)(fold(t))].

Let C[−µX.σ→µX.σ](fold(t))] ∈ CtxΣ be arbitrary. Since idµX.σ(fold(t)) =µX.σ

fold(t) holds (an instance of Kleene equivalence), it suffices to prove that

C[fold(t)] vΣ C[dµX.σ(∞)(fold(t))].

38

By Lemma 5.19, it suffices to show that

C[fold(t)] vΣ C[dµX.σ(∞)(|fold(t)|)].

But by Lemma 5.18, it suffices to show that

C[fold(t)] vΣ C[|fold(t)|].

By Lemma 5.22, C[fold(t)] ⇓ > implies that |C[fold(t)]| = |>| =Σ >. It then
follows that

C[fold(t)] ⇓ > =⇒ |C[fold(t)]| ⇓ > (Lemma 5.22)
=⇒ |C|[|fold(t)|] ⇓ > (Lemma 5.20)
=⇒ C[|fold(t)|] ⇓ >. (Lemma 5.21)

which is what we aim to show.

As remarked in the beginning of Section 5.4, we have by Theorem 5.15 that

dσ(n) v eσ(n) v idσ

for all closed types σ and all n ∈ ω. In particular, we must have

dσ(∞) v eσ(∞) v idσ.

Now as a consequence of Lemmata 5.24 and 5.16, dσ(∞) = idσ. Thus it follows
that

eσ(∞) = idσ.

This means

idµX.τ = eµX.τ (∞)

= fold ◦ SX`τ (eµX.τ (∞− 1)) ◦ unfold

= fold ◦ SX`τ (eµX.τ (∞)) ◦ unfold
= fold ◦ SX`τ (idµX.τ) ◦ unfold

and thus idµX.τ is the (only) least endomorphism e on µX.τ which satisfies the
equation

e = fold ◦ SX`τ (e) ◦ unfold.

Consequently, for the more general case, the least endomorphism e on S(~σ) for
which the following diagram

S(~σ)
e - S(~σ)

T (~σ, S(~σ))

iS(~σ)

?

T (id~σ, e)
- T (~σ, S(~σ))

iS(~σ)

?

commutes must be the identity morphism 〈idS(~σ), idS(~σ)〉. Thus the proof that
all realisable semi-functors preserve identity morphisms is complete and so func-

39

toriality of type expressions is now established.

6 Operational algebraic compactness

In (Freyd, 1991), P.J. Freyd introduced the notion of algebraic compactness to
capture the bifree nature of the canonical solution to the domain equation

X = FX

in that “every endofunctor (on cpo-enriched categories, for example, DCPO⊥!,
the category of pointed cpos and strict maps4) has an initial algebra and a
final co-algebra and they are canonically isomorphic”. In the same reference,
Freyd proved the Product Theorem which asserts that algebraic compactness is
closed under finite products. Crucially, this implies that DCPO⊥! ×DCPOop

⊥!

is algebraically compact (since its components are) and thus allows one to cope
well with the mixed-variant functors - making the study of recursive domain
equations complete. Now proving that DCPO⊥! is algebraically compact is
no easy feat as one inevitably has to switch to the category of embeddings
and projections, together with a bilimit construction. Using the operational
machinery developed so far, we shall establish operational algebraic compactness
with respect to the class of realisable functors.

In this chapter, we establish that the diagonal category FPC!
δ is para-

metrised algebraically compact. We also consider an alternative choice of cat-
egorical framework, namely the product category ˘FPC! := FPCop

! × FPC!,
and show that this is also parametrised algebraically compact. We then briefly
compare the two approaches.

The reader should note that we rely on uniformity (cf. Lemma 4.1) in
establishing the algebraic compactness results in Sections 6.1 - 6.2. Such a
proof technique was probably first done in (Simpson, 1992) for a more general
setting of Kleisli-categories.

6.1 Operational algebraic compactness

Theorem 6.1. (Operational algebraic completeness I)
Every realisable endofunctor

F : FPC!
δ → FPC!

δ

has an initial algebra.

We say that the category FPC!
δ is operationally algebraically complete with

respect to the class of realisable functors.

Proof. Let X ` τ be the type-in-context which realises F . Denote µX.τ by D
and (unfold, fold)µX.τ by i. We claim that (D, i) is an initial F -algebra. For
that purpose, suppose (D′, i′) is another F -algebra. We must show that there
is a unique F -algebra homomorphism k = (k−, k+) from (D, i) to (D′, i′). We

4If non-strict maps are considered then the identity functor does not have an initial algebra.

40

begin by defining k to be the least homomorphism for which the diagram

FD
i - A

FD′

k

?

i′
- D′

k

?

commute. In other words, define k to be the least solution of the recursive
equation

k = i′ ◦ F (k) ◦ i−1.

Of course, k fits into the above commutative diagram. It remains to show that
k is unique. To achieve this, suppose that k′ is another morphism which makes
the above diagram commute. Then we consider the following diagram:

(D → D)× (D → D)
G- (D′ → D)× (D → D′)

(D → D)× (D → D)

Φ

?

G
- (D′ → D)× (D → D′)

Ψ

?

where the programs Φ,Ψ and G are defined as follows.

Φ := λh : (D → D)× (D → D).i ◦ F (h) ◦ i−1

Ψ := λk : (D′ → D)× (D → D′).i′ ◦ F (k) ◦ i−1

G := λh : (D → D)× (D → D).k′ ◦ h.

Note that from the definition of k we have fix(Ψ) = k. This diagram commutes
because for any h : (D → D)× (D → D), it holds that

k′ ◦ Φ(h) = k′ ◦ i ◦ F (h) ◦ i−1 (def of Φ)
= i′ ◦ F (k′) ◦ i−1 ◦ i ◦ F (h) ◦ i−1 (k′ = i′ ◦ F (k′) ◦ i−1)
= i′ ◦ F (k′) ◦ F (h) ◦ i−1 (unfold = fold−1)
= i′ ◦ F (k′ ◦ h) ◦ i−1 (F is a functor)
= Ψ(k′ ◦ h) (def of Ψ)

Note that fix(Φ) = (idD, idD) by Lemma 4.9. Since G is strict, it follows from
Lemma 4.1 that

k = fix(Ψ) = k′ ◦ fix(Φ) = k′ ◦ (idD, idD) = k′.

Thus, the uniqueness of k is established.

Theorem 6.2. (Operational algebraic compactness I)
Let F : FPC!

δ → FPC!
δ be a realisable endofunctor. Then every initial F -

algebra is bifree, i.e., its inverse is also a final coalgebra.

41

We say that the category FPC!
δ is operationally algebraically compact with

respect to the class of realisable functors.

Proof. W.l.o.g., we may consider the initial F -algebra

i : F (D)→ D

where (D, i) is as defined in the proof of Theorem 6.1. Note that i−1 =
(fold,unfold)D so that

i−1 : D → F (D)

is an F -coalgebra. Using the arguments similar to those for reestablishing ini-
tiality, it is evident that (D, i−1) is a final F -coalgebra.

Theorem 6.3. (Operational parametrised algebraic compactness I)
Let F : (FPC!

δ)n+1 → FPC!
δ be a realisable functor. Then there exists a

realisable functor H : (FPC!
δ)n → FPC!

δ and a natural isomorphism i such
that for all sequences of closed types P in (FPC!

δ)n, we have

iP : F (P,H(P)) ∼= H(P).

Moreover, (H(P), iP) is a bifree algebra for the endofunctor

F (P,) : FPC!
δ → FPC!

δ.

We say that the category FPC!
δ is operationally parametrised algebraically com-

pact with respect to the class of realisable functors.

Proof. Every P ∈ (FPC!
δ)n induces a realisable endofunctor

F (P,) : FPC!
δ → FPC!

δ

and by operational algebraic completeness of FPC!
δ we always have an initial

F (P,)-algebra which we denote by (H(P), iP). Next we extend the action of
H to morphisms. For every f : P → Q, let H(f) be the unique F (P,)-algebra
homomorphism from (H(P), iP) to (H(Q), iQ ◦ F (f,H(Q))), i.e., H(f) is the
unique morphism g for which the diagram

F (P,H(P))
iP - H(P)

F (P,H(Q))

F (P, g)

?

F (f,H(Q))
- F (Q,H(Q))

iQ
- H(Q)

g

?

commutes. By the universal property of initial algebras, H is a functor and by
construction, i is a natural transformation. Moreover, Theorem 6.2 ensures that
(H(P), iP) is a bifree F (P,)-algebra.

42

6.2 Alternative choice of category

The classical theory of recursive domain equations centres around functors of
the form F : (DCPOop

⊥! ×DCPO⊥!)n+1 → (DCPOop
⊥! ×DCPO⊥!). As noted

before, DCPOop
⊥! × DCPO⊥! is algebraically compact. But more generally

DCPOop
⊥!×DCPO⊥! is parameterised algebraically compact - a result implied

by Corollary 5.6 of (Fiore and Plotkin, 1994).
Let ˘FPC! denote the product category FPCop

! × FPC! where FPC! is
defined in Section 4.1. The natural question to ask is whether the category

˘FPC! is algebraically compact. In order that this question makes sense, one has
to identify an appropriate class of functors, F , with respect to which algebraic
compactness is defined. In this section, we show that, with a suitable choice
of F , the category ˘FPC! is parametrised algebraically compact with respect
to F , i.e., for every F-functor T : (˘FPC!)n+1 → ˘FPC!, there exists an F-
functor H : (˘FPC!)n → (˘FPC!) and a natural isomorphism i such that for
every sequence of closed types ~σ := σ−1 , σ

+
1 , . . . , σ

−
n , σ

+
n , the pair (H(~σ), i~σ) is a

bifree algebra of the endofunctor T (~σ,−,+) : ˘FPC! → ˘FPC!.
In the framework of the product category ˘FPC!, it is mandatory to enforce a

separation of positive and negative occurrences of variables. An occurrence of X
in a type expression is positive (respectively, negative) if it is hereditarily to the
left of an even (respectively, odd) number of function space constructors. For
example, for the type expression X+ (X → X), separation yields X+ + (X− →
X+).

Notation. We use the following notations:

~X := X−1 , X
+
1 , . . . , X

−
n , X

+
n

~X± := X+
1 , X

−
1 , . . . , X

+
n , X

−
n

~σ := σ−1 , σ
+
1 , . . . , σ

−
n , σ

+
n

~σ± := σ+
1 , σ

−
1 , . . . , σ

+
n , σ

−
n

~f : ~R→ ~S := ~f+ : ~R+ → ~S+, ~f− : ~S− → ~R−.

Sometimes, we also use P andQ to denote objects in ˘FPC!, and u for morphisms
in ˘FPC!.

Let us begin by considering an appropriate class of n-ary functors of type

(˘FPC!)n → FPC!.

A seemingly reasonable choice is the class of syntactic functors (originally used
by A. Rohr in his Ph.D. thesis (Rohr, 2002)) which is defined as follows.

A syntactic functor T : (˘FPC!)n → FPC! is a functor which is realised by

(1) a type-in-context ~X ` τ ; and

(2) a term-in-context of the form:

~R, ~S; ~f : ~R→ ~S ` t : τ [~R/ ~X]→ τ [~S/ ~X]

43

such that for any ~σ ∈ ˘FPC!
n
, it holds that

T (~σ) = τ [~σ/ ~X]

and for any ~ρ, ~σ ∈ ˘FPC!
n
, and any ~u ∈ ˘FPC!

n
(~ρ, ~σ), we have

T (~u) = t[~u/~f].

However, there are some problems with this definition. Firstly, syntactic
functors aren’t functors of type ˘FPC! → ˘FPC! and so it does not immediately
make sense to study parametrised algebraic compactness with respect to this
class of functors. The first problem is superficial and can be easily overcome as
follows. For a given syntactic functor F : (˘FPC!)n → FPC!, there is a standard
way of turning it to an endofunctor F̆ : (˘FPC!)n → ˘FPC!.

Here we help the reader recall what involutory categories are. An involutory
category is a category C with an involution c : C→ Cop, i.e., for all C ∈ C, it
holds that c2(C) = C and for any object A, B ∈ C, the diagram

C(A,B)
c- C(c(B), c(A))

C(A,B)

c

?

id
C

(A
,B

) -

commutes in Set (c.f. (Fiore and Plotkin, 1994)). The category of involutary
categories, InvCat, has as objects the involutory categories (C, c) and as mor-
phisms those functors F : (C, c) → (D, d) between involutory categories such
that F op ◦ c = d ◦ F .

There is a well-known adjunction between the following categories:

InvCat
U -
�
G1

Cat

where U is the forgetful functor and G1 : C 7→ (C̆, (−)§) where

C̆ = Cop ×C

(C−, C+)§ = (C+, C−)

(f−, f+)§ = (f+, f−).

We now exploit this adjunction. Via the adjunction, there corresponds a
unique functor F̆ : (˘FPC!)n → ˘FPC! such that the following triangle

˘FPC!
˘FPC!

ε- FPC!

(˘FPC!)n

F̆

6

(˘FPC!)n

F̆

6

F

-

44

commutes. The explicit definition of F̆ is given by:

F̆ (~σ) = (F (~σ±), F (~σ)).

So one might consider defining a functor G : ˘FPC!
n
→ ˘FPC! to be syntactic if

there exists a syntactic functor F : ˘FPC!
n
→ FPC! such that G = F̆ .

However, if we work with this definition, a serious problem5 arises. As we
shall see in Theorem 6.7, the parametrised initial algebra of such functors are
not of the form H̆ for some functor H.

This can be fixed by working with our official definition:

Definition 6.4. An n-ary functor F : (˘FPC!)n → ˘FPC! is said to be syntactic
if it is given by:

(i) a pair of types-in-context ~X ` τ−, τ+, and

(ii) a pair of terms-in-context ~R, ~S; ~f : ~R→ ~S `

t− : τ−[~S/ ~X]→ τ−[~R/ ~X], t+ : τ+[~R/ ~X]→ τ+[~S/ ~X].

such that for any ~σ ∈ ˘FPC!
n
,

F (~σ) = (τ−[~σ/ ~X], τ+[~σ/ ~X])

and for any ~ρ, ~σ ∈ ˘FPC!
n

and any ~u ∈ ˘FPC!
n
(~ρ, ~σ), we have

F (~u) = 〈t−, t+〉[~u/~f].

Before we establish operational algebraic completeness and compactness for
the category ˘FPC!, we pause to look at some examples.

Example 6.5. (1) Consider the type-in-context X ` X → X. The object
part part of the syntactic functor T ~X`X→X is realised by the types-in-
context

X−, X+ ` (X+ → X−), (X− → X+).

The morphism part of the syntactic functor T ~X`X→X is realised by the
term-in-context

R,S; f : R→ S ` 〈t−, t+〉

where

t− := λg : (S+ → S−).f− ◦ g ◦ f+

t+ := λh : (R− → R+).f+ ◦ h ◦ f−.

(2) The type-in-context X2 ` µX1.(X1 → X2) is not functorial in X2 since
one unfolding of µX1.(X1 → X2) yields (µX1.(X1 → X2)) → X2 and
the latter expression does not respect the variance of X2. It seems clear
that there is no syntactic functor whose object part is realised by the
type-in-context X2 ` µX1.(X1 → X2).

5This problem was discovered by the author and T. Streicher during a private communi-
cation in January 2006.

45

Remark 6.6. Crucially, Example 6.5(2) indicates that if a minimal invariance
for X2, X1 ` X1 → X2 were to exist then it cannot be simply given by X2 `
µX1.(X1 → X2). Theorems 6.7 and 6.9 below provide us with a way to calculate
the minimal invariance.

Adapting the proof of Freyd’s Product Theorem in the operational setting,
we establish the following.

Theorem 6.7. (Operational algebraic completeness II)
Every syntactic functor

F : ˘FPC! → ˘FPC!

has an initial algebra.

We say that the category ˘FPC! is operationally algebraically complete with
respect to the class of syntactic functors.

Proof. Recall that F can be resolved into its coordinate functors

T− : ˘FPC! → FPCop
! and T+ : ˘FPC! → FPC!

which are explicitly defined as follows. Note that T− (respectively, T+) is
realised by a type-in-context ~X ` τ− (respectively τ+) and a term-in-context
~R, ~S; ~f : ~R→ ~S ` t− : τ−[~S/ ~X]→ τ−[~R/ ~X] (respectively, t+).

We want to construct an initial F -algebra in stages.

(1) For each σ+ in FPC!, consider the endofunctor

T−(, σ+) : FPCop
! → FPCop

! .

The initial algebra of this endofunctor will be one of the ingredients re-
quired in the proof. Thus we must prove that T−(, σ+) has an initial
algebra. One need not look very far for one:

unfoldop : T−(µX−.T−(X−, σ+), σ+)→ µX−.T−(X−, σ+).

For convenience, denote unfoldop by f−σ+ and µX−.T−(X−, σ+) by F−(σ+).
Rewriting gives:

f−σ+ : T−(F−(σ+), σ+)→ F−(σ+).

To prove that this is an initial T−(, σ+)-algebra in FPCop
! , suppose we

are given another T−(, σ+)-algebra aop : T−(τ, σ+) → τ . We need to
show that there is a unique morphism hop : F−(σ+) → τ such that the
following diagram commute in FPC!:

T−(F−(σ+), σ+) �
unfold

F−(σ+)

T−(τ, σ+)

T−(h, idσ+)
6

� a
τ

h

6

46

For existence, we define h to be the least fixed point of the program

Ψ : (τ → F−(σ+))→ (τ → F−(σ+))
Ψ = λh.fold ◦ T−(h, idσ+) ◦ a

Since Ψ(h) = Ψ(fix(Ψ)) = fix(Ψ) = h, it follows that h fits into the above
commutative diagram. It therefore remains to establish its uniqueness.
For that purpose, we consider the program

Φ : F−(σ+)→ F−(σ+)
Φ = λk.fold ◦ T−(k, idσ+) ◦ unfold

We now show that fix(Φ) = idF−(σ+). Note that because T− is syntac-
tic, so is T−(, σ+). Denote fix(Φ) by k. Again appealing to minimal
invariance (cf. Lemma 4.9), it follows that k = idF−(σ+).

In order to show that h is the unique morphism which fits into the diagram,
we suppose that there is another such morphism h′. Consider the following
diagram:

(F−(σ+)→ F−(σ+))
− ◦ h′- (τ → F−(σ+))

(F−(σ+)→ F−(σ+))

Φ

? − ◦ h′- (τ → F−(σ+))

Ψ

?

This diagram commutes since for every k : F−(σ+) → F−(σ+) it holds
that

Φ(k) ◦ h′ = fold ◦ T−(k, idσ+) ◦ unfold ◦ h′

= fold ◦ T−(k, idσ+) ◦ unfold ◦ fold ◦ T−(h′, idσ+) ◦ a
= fold ◦ T−(k ◦ h′, idσ+) ◦ a
= Ψ(k ◦ h′)

Note that − ◦ h′ is always strict. Invoking Lemma 4.1, we conclude that

h = fix(Ψ) = fix(Φ) ◦ h′ = idF−(σ+) ◦ h′ = h′.

Thus we have established that f−σ+ : T−(F−(σ+), σ+) → F−(σ+) is an
initial T−(, σ+)-algebra in FPCop

! .

(2) We now extend F− to be a functor FPC! → FPCop
! . For that, we define

the morphism part of F−. Let w+ : ρ+ → σ+ be a FPC!-morphism.
Using the initiality of F−(ρ+), define F−(w+) to be the unique morphism

47

which makes the following diagram commute in FPCop
! :

T−(F−(ρ+), ρ+)
f−ρ+

- F−(ρ+)

T−(F−(σ+), ρ+)

T−(F−(w+), idρ+)

?

T−(idF−(σ+), w
+)
- T−(F−(σ+), σ+)

f−σ+

- F−(σ+)

F−(w+)

?

Rediagramming a little gives:

T−(F−(ρ+), ρ+)
f−ρ+
- F−(ρ+)

T−(F−(σ+), σ+)

T−(F−(w+), w+)

?

f−σ+

- F−(σ+)

F−(w+)

?

Notice that the functoriality of F− derives from the initiality of F−(ρ+).

(3) In this stage, we define an endofunctor G : FPC! → FPC! by

G(σ+) := T+(F−(σ+), σ+).

In a similar way, we have the initial algebra for G given by

foldµX
+.G(X+) : T+(F−(µX+.G(X+)), µX+.G(X+))→ µX+.G(X+).

We use the notations δ+ for µX+.G(X+) and d+ for foldµX
+.G(X+).

Rewriting, we have the initial G-algebra given by

d+ : T+(F−(δ+), δ+)→ δ+ (17)

We further define δ− := F−(δ+) and denote the initial T−(, δ+)-algebra
f−δ+ : T−(F−(δ+), δ+)→ F−(δ+) by

d− : T−(δ−, δ+)→ δ− (18)

bearing in mind that this is a morphism in FPCop
! .

(4) We aim to show that

(d−, d+) : (T−(δ−, δ+), T+(δ−, δ+))→ (δ−, δ+)

is an initial (T−, T+)-algebra. So suppose that we have another (T−, T+)-
algebra

(t−, t+) : (T−(τ−, τ+), T+(τ−, τ+))→ (τ−, τ+).

We want to show that there is a unique algebra homomorphism from
(d−, d+) : (T−(δ−, δ+), T+(δ−, δ+)) → (δ−, δ+) to this. In this stage,

48

we show the existence. By the initiality of F−(τ+), there is a unique
morphism v− : F−(τ+)→ τ− in FPCop

! so that the following diagram in
FPCop

! :

T−(F−(τ+), τ+)
T−(v−, idτ+)- T−(τ−, τ+)

F−(τ+)

f−τ+

?

v−
- τ−

t−

?

Next we use the initiality of δ+ to define u+ : δ+ → τ+ to be the unique
FPC!-morphism so that the Diagram (1) commutes in FPC!.

T+(F−(δ+), δ+)
T+(F−(u+), u+)- T+(F−(τ+), τ+)

(1) T+(τ−, τ+)

T+(v−, idτ+)

?

δ+

d+

?

u+
- τ+

t+

?

Now define u− := v− ◦ F−(u+) in FPCop
! and redraw Diagram (1) (still

in FPC!) as Diagram (2).

T+(δ−, δ+)
T+(u−, u+)- T+(τ−, τ+)

(2)

δ+

d+

?

u+
- τ+

t+

?

Apply the functor F− to the morphism u+ : δ+ → τ+ so that we get the
following diagram in FPCop

! :

T−(F−(δ+), δ+)
T−(F−(u+), u+)- T−(F−(τ+), τ+)

F−(δ+)

f−σ+

?

F−(u+)
- F−(τ+)

f−τ+

?

49

Pasting the unnumbered diagrams, we obtain the following in FPCop
! :

T−(F−(δ+), δ+)
T−(F−(u+), u+)- T−(F−(τ+), τ+)

T−(v−, idτ+)- T−(τ−, τ+)

F−(δ+)

f−δ+

?

F−(u+)
- F−(τ+)

f−τ+

?

v−
- τ−

t−

?

Finally making use of the definitions of δ− and u−, we reduce the outer-
quadrangle of the above diagram to the following in FPCop

! :

T−(δ−, δ+)
T−(u−, u+)- T−(τ−, τ+)

(3)

δ−

f−δ+

?

u−
- τ−

t−

?

(5) Now it remains to show that (u−, u+) is unique. Suppose that we are given
the Diagrams (2) and (3). Notice that for any u+ : δ+ → τ+, there is a
unique u− such that Diagram (3) commute as can be seen by considering
the following diagram:

T−(F−(δ+), δ+)
T−(u−, idδ+)- T−(τ−, δ+)

T−(τ−, τ+)

T−(idτ− , u+)

?

F−(δ+)

f−δ+

?

u−
- τ−

t−

?

On the other hand, we know from an earlier part of the proof that for any
u+, we may take u− = v− ◦ F−(u+) in FPCop

! to obtain Diagram (3).
Hence we can conclude that u− = v− ◦F−(u+) in FPCop

! . Consequently,
putting these into Diagram (2) yields the commutativity of Diagram (1).
Now by the initiality of δ+, we can conclude that u+ is unique.

Theorem 6.8. (Operational algebraic compactness II)
Let F : ˘FPC! → ˘FPC! be a syntactic functor. Then the initial algebra of F is

50

bifree in the sense that the inverse

(d−, d+)−1 : (δ−, δ+)→ F (δ−, δ+)

is a final F -coalgebra.

We say that the category ˘FPC! is operationally algebraically compact with re-
spect to the class of syntactic functors.

Proof. Walking through the stages of the proof of Theorem 6.7, one can check
at each stage that a final coalgebra results when each initial algebra structure
map is inverted. Notice this works even for the definition of F− in stage (2).

Theorem 6.9. (Operational parametrised algebraic compactness II)
Let F : (˘FPC!)n+1 → ˘FPC! be a syntactic functor. Then there exists a syn-
tactic functor H : ˘FPC!

n
→ ˘FPC! and a natural isomorphism i such that for

all sequence of closed types P in (˘FPC!)n we have

iP : F (P,H(P)) ∼= H(P).

Moreover, (H(P), iP) is a bifree algebra for the endofunctor

F (P,) : ˘FPC! → ˘FPC!.

In other words, ˘FPC! is parametrised operationally algebraically complete with
respect to the syntactic functors.

Proof. For each P ∈ (˘FPC!)n, we have that F (P,) : ˘FPC! → ˘FPC! is a
syntactic endofunctor. So we can set (H(P), iP) to be an initial algebra F (P,)-
algebra. To extend the action of H to morphisms, for every f : P → Q in
(˘FPC!)n, let H(f) : H(P)→ H(Q) to be the unique F (P,)-algebra morphism
h from (H(P), iP) to (H(Q), iQ ◦ F (f,H(Q))), i.e., the following commutes:

F (P,H(P))
iP - H(P)

F (P,H(Q))

F (P, h)

?

F (f,H(Q))
- F (Q,H(Q))

iQ
- H(Q)

h

?

Notice that this unique h is also the least map for which the diagram commutes
because initiality is derived from least fixed point construction (cf. Stage (1) of
the proof of Theorem 6.7). By the universal property of initial algebras, H is a
functor (˘FPC!)n → ˘FPC!, and, by construction, i is a natural transformation.
Moreover, it is clear that H is syntactic. Finally, the bifreeness of (H(P), iP)
derives directly from Theorem 6.8.

Definition 6.10. In Theorem 6.9, the functor H : (˘FPC!)n → ˘FPC! is con-
structed out of the functor F : (˘FPC!)n+1 → ˘FPC! as a minimal invariant in
the last argument pair X−, X+. To indicate this dependence, we write

H := µF.

51

To each P ∈ (˘FPC!)n, H assigns the following pair of closed types:

H−(P) = µX−.T−(X−, H+(P))
H+(P) = µX+.T+(µX−.T−(X−, X+), X+).

To each morphism u ∈ ˘FPC!
n
(P,Q), the morphism H(u) is the least morphism

h for which the diagram

F (P,H(P))
iP- H(P)

F (Q,H(Q))

F (u, h)

?

iQ
- H(Q)

h

?

commutes.

Examples 6.11. The syntactic functor acting as minimal X1-invariant for
X1 → X2 is given by

H(X−1 , X
+
1) = (µX−2 .X

+
1 → X−2 , µX

+
2 .X

−
1 → X+

2).

Remark 6.12. In general, the functor H := µF is not symmetric. But we
expect that symmetry can be achieved in the form of an operational analogue
of Fiore’s diagonalisation technique (cf. p.124 of (Fiore, 1996)).

6.3 On the choice of categorical frameworks

In this section, we compare the two approaches via the diagonal category,
FPC!

δ, and the product category, ˘FPC!.
In the framework of the product category ˘FPC!, it is appropriate to study

the class of syntactic functors because all FPC types-in-context can be viewed as
syntactic functors. We show how this can be done by induction on the structure
of Θ ` σ. We denote the syntactic functor associated to Θ ` σ by FΘ`σ, or
simply F .

(1) Type variable.
Let Θ ` Xi be given. Define the functor F : ˘FPC!

n
→ ˘FPC! as follows.

For object P ∈ ˘FPC!
n
, define T (P) := Pi.

For morphism u ∈ ˘FPC!
n
(P,Q), define T (u) := ui.

Let Θ ` σ1, σ2 be given and F1, F2 : ˘FPC!
n
→ ˘FPC! be their associated

realisable functors. For a given syntactic functor F : ˘FPC!
n
→ ˘FPC!,

we write F− : ˘FPC!
n
→ FPCop

! and F+ : ˘FPC!
n
→ FPC! for its two

component functors.

(2) Product type.
For object P , define

F (P) := (F−1 (P)× F−2 (P), F+
1 (P)× F+

2 (P)

52

and for morphism u ∈ ˘FPC!
n
(P,Q), define

F (u) := (F−1 (u)× F−2 (u), F+
1 (u)× F+

2 (u)).

where the component morphisms are defined as follows:

F−1 (u)× F−2 (u) = λp.(F−1 (u)(fst(p)), F−2 (u)(snd(p)))
F+

1 (u)× F+
2 (u) = λq.(F 2

1 (u)(fst(q)), F 2
2 (u)(snd(q))).

(3) Sum type.
For object P , define

F (P) := (F−1 (P) + F−2 (P), F+
1 (P) + F+

2 (P)

and for morphism u ∈ ˘FPC!
n
(P,Q), define

F (u) := (F−1 (u) + F−2 (u), F+
1 (u) + F+

2 (u)).

where the component morphisms are defined as follows:

F−1 (u) + F−2 (u) = λw.case(w) of

{
inl(x).inl(F−1 (u)(x))
inr(y).inr(F−2 (u)(y))

F+
1 (u) + F+

2 (u) = λz.case(z) of

{
inl(x).inl(F−1 (u)(x))
inr(y).inr(F−2 (u)(y))

(4) Function type.
For object P ∈ ˘FPC!

n
, define

F (P) := (F+
1 (P)→ F−2 (P), F−1 (P)→ F+

2 (P))

and for morphism u ∈ ˘FPC!
n
(P,Q), define

F (u) := (F+
1 (u)→ F−2 (u), F−1 (u)→ F+

2 (u))

where the component morphisms are defined as follows:

F+
1 (u)→ F−2 (u) = λg : F+

1 (Q)→ F−2 (Q).F−2 (u) ◦ g ◦ F+
1 (u)

F−1 (u)→ F+
2 (u) = λh : F−1 (Q)→ F+

2 (Q).F+
2 (u) ◦ h ◦ F−1 (u).

(5) Lifted type.
Given the realisable functor FΘ`σ, we want to define FΘ`σ⊥ .
For object P , define

FΘ`σ⊥(P) := ((F−Θ`σ(P))⊥, (F+
Θ`σ(P))⊥)

and for morphism u ∈ ˘FPC!
n
(P,Q), define

FΘ`σ⊥(u) := (F−⊥ (u), F+
⊥ (u))

53

where the component morphisms are defined as follows:

F−⊥ (u) = λw.case(w) of up(x).up(F−Θ`σ(u)(x))
F+
⊥ (u) = λz.case(z) of up(x).up(F+

Θ`σ(u)(x)).

(6) Recursive type.
Let Θ, X ` σ be given and F the syntactic functor realising it. Define
FΘ`µX.σ to be µF as in Definition 6.10.

Notation. The syntactic functor associated to the type-in-context Θ ` σ is
denoted by FΘ`σ.

The following proposition reveals how the classes of realisable functors and
syntactic functors are related.

Proposition 6.13. For every type-in-context Θ ` σ, the realisable functor SΘ`σ
restricts and co-restricts to the syntactic functor FΘ`σ, i.e., the diagram

(FPC!
δ)n

SΘ`σ- FPC!
δ

(˘FPC!)n

Injn

?

∩

FΘ`σ
- ˘FPC!

Inj

?

∩

commutes up to natural isomorphism.

Proof. We prove by induction on the structure of Θ ` σ that for every type-in-
context Θ ` σ, there is a natural isomorphism

η : FΘ`σ ◦ Injn ∼= Inj ◦SΘ`σ.

(1) Type variable.
Let Θ ` Xi be given. Define η : FΘ`Xi ◦ Injn → Inj ◦SΘ`Xi as follows. For
every ~σ ∈ (FPC!

δ)n,
η~σ := 〈idσi , idσi〉.

Let Θ ` τ1, τ2 be given. By induction hypothesis, there are natural iso-
morphisms

ηj : FΘ`τj ◦ Injn → Inj ◦SΘ`τj

for j = 1, 2. We write ηj = 〈η−j , η
+
j 〉.

(2) Product type.
We define η : FΘ`τ1×τ2 ◦ Injn → Inj ◦SΘ`τ1×τ2 as follows. For every
~σ ∈ (FPC!

δ)n,
η~σ := 〈(η−1 × η

−
2)~σ, (η+

1 × η
+
2)~σ〉

54

where

(η−1 × η
−
2)~σ = λp.(η−1 (fst(p)), η−2 (snd(p)))

(η+
1 × η

+
2)~σ = λq.(η+

1 (fst(q)), η+
2 (snd(q))).

(3) Sum type.
We define η : FΘ`τ1+τ2 ◦ Injn → Inj ◦SΘ`τ1+τ2 as follows. For every ~σ ∈
(FPC!

δ)n,
η~σ := 〈(η−1 + η−2)~σ, (η+

1 + η+
2)~σ〉

where

(η−1 + η−2)~σ = λz.case(z) of inl(x).inl(η−1 (x)) or inr(y).inr(η−2 (y))
(η+

1 + η+
2)~σ = λz.case(z) of inl(x).inl(η+

1 (x)) or inr(y).inr(η+
2 (y)).

(4) Function type.
We define η : FΘ`τ1→τ2 ◦ Injn → Inj ◦SΘ`τ1→τ2 as follows. For every
~σ ∈ (FPC!

δ)n,
η~σ := 〈η+

1 → η−2 , η
−
1 → η+

2 〉

where

(η+
1 → η−2) := λg.η−2 ◦ g ◦ η

+
1

(η−1 → η+
2) := λh.η+

2 ◦ h ◦ η
−
1 .

(5) Lifted type.
Let Θ ` τ be given. The induction hypothesis asserts that there is a
natural isomorphism

η : FΘ`τ ◦ Injn → Inj ◦SΘ`τ .

We define a natural isomorphism

η⊥ : FΘ`τ⊥ ◦ Injn → Inj ◦SΘ`τ⊥

as follows. For every ~σ ∈ (FPC!
δ)n,

(η⊥)~σ := case(z) of up(x).up(η(x)).

(6) Recursive type.
Let Θ, X ` τ be given. The induction hypothesis asserts that there is a
natural isomorphism

ζ : FΘ,X`τ ◦ Injn → Inj ◦SΘ,X`τ .

We define a natural isomorphism

η : FΘ`µX.τ ◦ Injn → Inj ◦SΘ`µX.τ

as follows. For every ~σ ∈ (FPC!
δ)n, define η~σ to be the unique map h

55

which fits into the commutative diagram:

F (Injn(~σ), H ◦ Injn(~σ))
iInjn(~σ) - H ◦ Injn(~σ)

F ◦ Injn(~σ, SΘ`µX.τ (~σ))

F (Injn(~σ), h)

?

ζ~σ,SµX.τ (~σ)

- Inj ◦SΘ,X`τ (~σ, SΘ`µX.τ (~σ))
〈unfold, fold〉

- Inj ◦SΘ`µX.τ (~σ)

h

?

where H := µF . Note that the existence and uniqueness of h is guaranteed
by the initiality of iInjn(~σ) : F (Injn(~σ), H ◦ Injn(~σ))→ H ◦ Injn(~σ). Since
ζ, i and 〈unfold, fold〉 are natural, so is h. It remains to show that h
is an isomorphism. For this purpose, we have to define the inverse of
h. Now since i−1

Injn(~σ) : H ◦ Injn(~σ) → F (Injn(~σ), H ◦ Injn(~σ)) is a final
coalgebra and ζ is an isomorphism, there exists a unique g which fits into
the following commutative diagram:

F (Injn(~σ), H ◦ Injn(~σ)) �
i−1
Injn(~σ)

H ◦ Injn(~σ)

F ◦ Injn(~σ, SΘ`µX.τ (~σ))

F (Injn(~σ), g)
6

�
ζ−1
~σ,SµX.τ (~σ)

Inj ◦SΘ,X`τ (~σ, SΘ`µX.τ (~σ)) �
〈fold,unfold〉

Inj ◦SΘ`µX.τ (~σ)

g

6

We claim that g◦h = idH◦Injn(~σ) and h◦g = idInj ◦SΘ`µX.τ (~σ). To prove the
first equation, notice that g ◦ h is an F (Injn(~σ),)-algebra endomorphism
on H ◦ Injn(~σ). Thus by initiality of

iInjn(~σ) : F (Injn(~σ), H ◦ Injn(~σ))→ H ◦ Injn(~σ),

it must be that g ◦ h = idH◦Injn(~σ). For the second equation, we consider
the diagram below which is obtained by pasting the above two diagrams:
unique g which fits into the following commutative diagram:

F ◦ Injn(~σ, SΘ`µX.τ (~σ))
ζ~σ,SµX.τ (~σ)

- Inj ◦SΘ,X`τ (~σ, SΘ`µX.τ (~σ))
〈unfold, fold〉

- Inj ◦SΘ`µX.τ (~σ)

F ◦ Injn(~σ, SΘ`µX.τ (~σ))

F (Injn(~σ), h ◦ g)

?

ζ~σ,SµX.τ (~σ)

- Inj ◦SΘ,X`τ (~σ, SΘ`µX.τ (~σ))
?

〈unfold, fold〉
- Inj ◦SΘ`µX.τ (~σ)

h ◦ g

?

where the dotted arrow is the morphism

〈SΘ,X`τ (~σ, (h ◦ g)−), SΘ,X`τ (~σ, (h ◦ g)+)〉.

So for the second quadrangle, (h◦g)− and (h◦g)+ are both endomorphisms

56

on SΘ`µX.τ (~σ). By the initiality of

fold : SΘ,X`τ (~σ, SΘ`µX.τ (~σ))→ SΘ`µX.τ (~σ),

we conclude that h ◦ g = idInj ◦SΘ`µX.τ (~σ).

Within the framework of ˘FPC!, the treatment of recursive types can be
described schematically as follows.

(1) Perform a separation of type variables for a given type expression, i.e.,
into the positive and negative occurrences.

(2) Carry out treatment (i.e. the investigation in question), e.g. calculating
the minimal invariance of some syntactic functors.

(3) Perform a diagonalisation to derive the relevant conclusion regarding the
original type expression.

In view of Proposition 6.13, this three-fold process can be carried out directly
in the setting of the diagonal category. More precisely, for each closed type, there
is a realisable functor which does the “same” job as its syntactic counterpart
restricted and co-restricted to the diagonal. Because realisable functors can cope
with variances without having to explicitly distinguish between the positive and
negative type variables, the theory developed from using the diagonal category,
FPC!

δ, is clean. For instance, the functoriality of recursive type expression
µX.τ can be conveniently defined. This has a strong appeal to the programmer
as it requires a relatively little categorical overhead.

However, as a mathematical theory for treating recursive types, the approach
via the product category, ˘FPC!, is general and can cope with mathematical
notions, such as di-algebras (cf. (Freyd, 1991)), which the diagonal category
cannot.

7 The Generic Approximation Lemma

In this section, we study the canonical pre-deflationary structure on the closed
FPC types, defined earlier in Section 5.3 and develop, as a consequence of
this, a powerful proof technique known as the Generic Approximation Lemma6.
This lemma was first proposed by G. Hutton and J. Gibbons in (Hutton and
Gibbons, 2001) in which it was established, via denotational semantics, for poly-
nomial types (i.e., types built only from unit, sums and products). In that same
reference, the authors have suggested that it is possible to generalise the lemma
“to mutually recursive, parameterised, exponential and nested datatypes” (cf.
p.4 of (Hutton and Gibbons, 2001)). Here we confirm this by providing a proof
based on the operational domain theory we developed in Section 4. Also we use
some running examples from (Pitts, 1997) and (Gibbons and Hutton, 2005) to
demonstrate the power of the Generic Approximation Lemma as a proof tech-
nique for establishing program equivalence, where previously many other more
complex techniques had been employed.

6This is a generalisation of R. Bird’s approximation lemma (Bird, 1998), which in turn
generalises the well-known take lemma (Bird and Wadler, 1988).

57

7.1 The Generic Approximation Lemma

Theorem 7.1. The rational-chain idσn := eσ(n) defines a non-trivial rational
pre-deflationary structure on σ for every closed type σ.

Proof. By induction on σ. Here we present only the proof for the case of re-
cursive types. Let S be the functor realising X ` σ. We now prove (1). (Base
case) The case where n = 0 is trivially true.
(Inductive step) This is justified by the following calculations:

idµX.σn+1 ◦ idµX.σn+1

= fold ◦ S(idµX.σn) ◦ unfold ◦ fold ◦ S(idµX.σn) ◦ unfold (def. of idµX.σn+1)
= fold ◦ S(idµX.σn) ◦ S(idµX.σn) ◦ unfold (β-rule)
= fold ◦ S(idµX.σn ◦ idµX.σn) ◦ unfold (S is a functor.)
= fold ◦ S(idµX.σn) ◦ unfold (Ind. hyp.)
= idµX.σn+1 . (def. of idµX.σn+1)

For (2), we rely on the monotonicity of S as follows.
idµX.σn+1

= fold ◦ S(idµX.σn) ◦ unfold (def. of idµX.σn+1)
v fold ◦ S(idµX.σ) ◦ unfold (Ind. hyp.)
= fold ◦ idσ[µX.σ/X] ◦ unfold (Sis a functor.)
= idµX.σ. (η-rule)

Because ∞ =∞− 1, the morphism k := idµX.σ∞ satisfies the recursive equation

k = fold ◦ S(k) ◦ unfold.

By Lemma 4.9, idµX.σ is the least solution of the above equation and thus must
be below idµX.σ∞ . On the other hand, idµX.σ∞ =

⊔
n idµX.σn so that idµX.σ∞ v

idµX.σ. Hence idµX.σ∞ =
⊔
n idµX.σn = idµX.σ and thus (3) holds.

Notation. We write x =n y for idn(x) = idn(y).

Corollary 7.2. (The Generic Approximation Lemma)
Let σ be a closed type and x, y : σ. Then

x = y ⇐⇒ ∀n ∈ N.(x =n y).

Proof. (=⇒) Trivial.
(⇐=) x =

⊔
n idn(x) =

⊔
n idn(y) = y by Theorem 7.1.

7.2 Sample applications

In this section, we demonstrate the versatility of the generic approximation
lemma by using some running examples of programs taken from (Pitts, 1997)
and (Gibbons and Hutton, 2005). For each example, we compare the use of the
Generic Approximation Lemma (Corollary 7.2) with an alternative method.

7.2.1 List type and some related notations

Let τ be a closed type. The closed type [τ] := µα.1 + τ × α is called the lazy
list type associated to τ . An element of [τ] may be thought of as a (finite or
infinite) list of elements in τ (which may include ⊥τ).

58

In the course of our discussion, we make use of the following:

(1) [] := fold(inl(∗))

(2) cons : τ → [τ]→ [τ]
cons x xs = fold(inr(x, xs)).
We also write cons x xs as (x : xs).

(3) Let σ be a closed type.
A program f : [τ]→ σ defined by cases, i.e.,

f(l) = case(l) of

 inl(x).s1

inr(y).s2

is written in Haskell style:

f [] = s1

f (x : xs) = s2.

We shall omit from our writing the cases which produce divergence. For
instance, the familiar head function hd : [τ] → τ and tail function tl :
[τ]→ [τ] are defined as follows:

hd (x : xs) = x
tl (x : xs) = xs.

(4) For programs f : (τ → τ)→ (τ → τ), we write h := fix(f) as

h : τ → τ

h = f h.

All the examples covered here only involve the basic type constructors. So in fact
one could have, for the sake of these examples, developed just the machineries
for basic type expressions.

The following lemma comes handy whenever the Generic Approximation
Lemma is applied to list types.

Lemma 7.3. Let n > 0 be a natural number and τ be a closed type. Then the
program idn : [τ]→ [τ] satisfies the following equations:

idn[] = []
idn(x : xs) = (x : idn−1(xs)).

Proof. For the empty list [], we have

idn[]
= fold ◦ (1 + τ × idn−1) ◦ unfold(fold(inl(∗)))
= fold ◦ (1 + τ × idn−1)(inl(∗))
= fold(inl(∗))
= [].

59

For the list (x : xs), we have

idn(x : xs)
= fold ◦ (1 + τ × idn−1) ◦ unfold(fold(inr(x, xs)))
= fold ◦ (1 + τ × idn−1)(inr(x, xs))
= fold(inr(x, idn−1(xs)))
= (x : idn−1(xs)).

7.2.2 The map-iterate property

We define two familiar functions map and iterate.
map : (τ → τ)→ [τ]→ [τ]
map f [] = []
map f (x : xs) = (f(x) : map f xs)

iterate : (τ → τ)→ τ → [τ]
iterate f x = (x : iterate f f(x))

Proposition 7.4. (The map-iterate property)
Let τ be a closed type. For any f : (τ → τ) and any x : τ , it holds that

map f (iterate f x) = iterate f f(x).

This property had been proven in (Gibbons and Hutton, 2005) using pro-
gram fusion. We reproduce their proof here. For this method, one needs to
define the program unfd as follows. Let σ and τ be given closed types. Define

unfd : (σ → Bool)→ (σ → τ)→ (σ → σ)→ σ → [τ]
unfd p h t x = if p(x) then [] else h(x) : unfd p h t tx

The unfd function “encapsulates the natural basic pattern of co-recursive defini-
tion” (p.9 of (Gibbons and Hutton, 2005)). Because several familiar co-recursive
functions on lists can be defined in terms of unfd, one can rely on a universal
property (which we describe below) of unfd to generate a powerful proof method
whenever such co-recursive programs are involved. For example, if we define

F : σ → Bool
F x = F (:= inl(⊥))

then we can define the program iterate as follows:

iterate f := unfd F id f.

Likewise, if we define
null : [τ]→ Bool
null [] = T (:= inr(⊥))
null (x : xs) = F (:= inl(⊥))

then the program map can be defined as follows:

map f = unfd null (f ◦ hd) tl.

The proof method relies on a universal property enjoyed by unfd, which we now

60

describe. Define q : σ → 1 + τ × σ by

q(x) = if p(x) then inl(∗) else inr(h(x), t(x))

and k : σ → [τ] by
k = unfd p h t.

It then follows from the definitions of q and k that the diagram

σ
q - 1 + τ × σ

[τ]

k

?

unfold[τ]
- 1 + τ × [τ]

1 + idτ × k

?

commutes. Moreover k = unfd p h t is the unique morphism making the above
diagram commute since unfold[τ] : [τ]→ 1+τ×[τ] is a final (1+τ×−)-coalgebra
by Theorem 6.2. Further suppose that p′ : σ → Bool, h′ : σ → τ and t′ : σ → σ
are programs such that

p′ = p ◦ g, h′ = h ◦ g and g ◦ t′ = t ◦ g.

By defining q′(x) = if p′(x) then inl(∗) else inr(h′(x), t′(x)), it follows that the
upper quadrangle

σ
q′ - 1 + τ × σ

σ
q
-

g

-

1 + τ × σ
�

1 +
τ
×
g

[τ]

k ◦ g

?

unfold[τ]
-

�

k

1 + τ × [τ]

1 + τ × (k ◦ g)

?

1 +
τ ×
k -

commutes. Notice that the finality of unfold[τ] : [τ]→ 1+τ×[τ] guarantees that
k ◦ g is the unique map such that the outer quadrangle of the above diagram
commutes. Thus, the following inference rule holds:

p ◦ g = p′ h ◦ g = h′ t ◦ g = g ◦ t′
(unfd p h t) ◦ g = unfold p′ h′ t′

.

This rule states three conditions which together ensure that the composition of
an unfd and a function can be fused together to give a single unfd.

61

It follows from the above inference rule that

(unfd p h t) ◦ t = unfd (p ◦ t) (h ◦ t) t (19)
map f ◦ (unfd p h t) = unfd p (f ◦ h) t (20)

Proof.
(iterate f) ◦ f

= (unfd F id f) ◦ f (def. of iterate)
= unfd (F ◦ f) (id ◦ f) f (fusion (19))
= unfd F (f ◦ id) f (constant functions, composition)
= map f ◦ unfd F id f (fusion (20))
= map f ◦ iterate f. (def. of iterate)

Remark 7.5. Program fusion is a high-level method, i.e., it allows proofs to be
performed in a purely equational way. However, it is too specialised a method
in that programs involved must first be encoded using the unfd function.

We prove the Map-Iterate Proposition 7.4 using Corollary 7.2.

Proof. We prove by induction on n that for any x : τ and any f : (τ → τ) it
holds that

map f (iterate f x) =n iterate f f(x).

The base case is trivial and the inductive step is justified by:
idn+1(map f (iterate f x))

= idn+1(map f (x : iterate f f(x))) (def. of iterate)
= idn+1(f(x) : map f (iterate f f(x))) (def. of map)
= f(x) : idn(map f (iterate f f(x))) (Lemma 7.3)
= f(x) : idn(iterate f f(f(x))) (Ind. hyp.)
= idn+1(f(x) : iterate f f(f(x))) (Lemma 7.3)
= idn+1(iterate f f(x)) (def. of iterate)

Thus the result holds by Corollary 7.2.

7.2.3 Zipping two natural number lists

Let us define some programs.
zip : [σ]→ [τ]→ [σ × τ]
zip [] l = []
zip (x : xs) [] = []
zip (x : xs) (y : ys) = (x, y) : zip xs ys
from : Nat→ Nat→ [Nat]
from x y = (x : from (x+ y) y)

succ : Nat→ Nat
succ x = x+ 1

We use the following notation:

succ0 = idNat and succi+1 = succ ◦ succi.

plus : (Nat× Nat)→ Nat
plus (x, y) = if x == 0 then y else 1 + plus(x− 1, y)

62

Note that plus(x, y) = x+ y.

For each natural number k, define:
natsk : [Nat]
natsk = (k : map succ natsk)

Proposition 7.6. For any positive integer k, it holds that:

map plus (zip natsk natsk) = from 2k 2.

In (Pitts, 1997), the above proposition is established using Kleene equiva-
lence and list-bisimulations. Before we reproduce his proof, let us recall the
definition of list-bisimulation (cf. (Pitts, 1997)), a technique used for proving
contextual equivalence of lists.

Proposition 7.7. (List-bisimulation, Proposition 3.10 of (Pitts, 1997))
For any type τ , a binary relation R ⊆ Exp[τ]×Exp[τ] is called a [τ]-bisimulation
if whenever l R l′

l ⇓ [] =⇒ l′ ⇓ [] (21)
l′ ⇓ [] =⇒ l ⇓ [] (22)

l ⇓ (x : xs) =⇒ ∃x′, xs′. (23)
(l′ ⇓ (x′ : xs′) ∧ x =τ x

′ ∧ xs R xs′)
l′ ⇓ (x′ : xs′) =⇒ ∃x, xs. (24)

(l ⇓ (x : xs) ∧ x =τ x
′ ∧ xs R xs′).

Then for any l, l′ : [τ],

l =[τ] l
′ iff l R l′ for some [τ]-bisimulation R .

Proof. Here we omit the proof which the reader can find in either (Pitts, 1997)
or (Ho, 2006b).

We reproduce Pitts’ proof of Proposition 7.6 which uses Proposition 7.7.

Proof. Consider the following closed terms defined by induction on n ∈ N:

n0 := k e0 := 2k l0 := natsk
nm+1 := succ nm em+1 := em + 2 lm+1 := map succ lm

The definitions of from and em bear upon us to have:

from em 2 ⇓ (em : from em+1 2) (25)

From the definitions of map, natsk, lm and nm, it follows by induction on m
that

lm ⇓ (nm : lm+1)

By applying the zip function, we have that

zip lm lm ⇓ ((nm, nm) : zip lm+1 lm+1)

63

and from the definition of map that

map plus (zip lm lm) ⇓ (plus (nm, nm) : map plus (zip lm+1 lm+1)) (26)

One then establishes routinely by induction on m that

plus (nm, nm) ∼=kl em

and since Kleene equivalence is an FPC bisimulation, we have

plus (nm, nm) =Nat em. (27)

Now define R ⊆ [Nat]× [Nat] by

R := {(map plus (zip lm lm), from em 2) | m ∈ N}.

Then properties (25) – (27) together imply that R satisfies all the conditions
(21)-(24) and hence is a [Nat]-bisimulation. Thus the proof is complete by virtue
of Proposition 7.7.

Remark 7.8. Notice that in order to apply Proposition 7.7 one must come up
with a suitable list-bisimulation.

Before using Corollary 7.2 to prove Proposition 7.6, we establish a useful
property.

Proposition 7.9. For any i, k ∈ N, it holds that

map succi+1 natsk = map succi natsk+1.

Proof. We prove by induction on n that for all i, k ∈ N,

map succi+1 natsk =n map succi natsk+1.

and the desired result follows from Corollary 7.2. The base case is trivial and
the inductive step is justified by

idn+1(map succi+1 natsk)
= idn+1(map succi+1 (k : map succ natsk))
= idn+1(succi+1(k) : map succi+1(map succ natsk))
= idn+1(succi+1(k) : map succi+2 natsk)
= (succi+1(k) : idn(map succi+2 natsk))
= (succi+1(k) : idn(map succi+1 natsk+1)) (ind. hyp.)
= (succi(k + 1) : idn(map succi(map succ natsk+1)))
= idn+1(map succi (k + 1 : map succ natsk+1))
= idn+1(map succi natsk+1)

We now prove Proposition 7.6 using Corollary 7.2.

Proof. We prove by induction on n that for all k ∈ N, it holds that

map plus (zip natsk natsk) =n from 2k 2.

64

The base case is trivial and the inductive step is justified by:
idn+1(map plus (zip natsk natsk))

= idn+1(map plus
((k, k) : zip (map succ natsk) (map succ natsk))))

= idn+1(2k : map plus
(zip (map succ natsk) (map succ natsk)))

= idn+1(2k : map plus (zip natsk+1 natsk+1))
= (2k : idn(map plus (zip natsk+1 natsk+1)))
= (2k : idn(from 2k + 2 2))
= idn+1(2k : from 2k + 2 2)
= idn+1(from 2k 2)

The desired result then follows from Corollary 7.2.

7.2.4 The ‘take’ lemma

Let us now define the take function of (Bird and Wadler, 1988).
take : Nat→ [τ]→ [τ]
take 0 l = []
take n [] = []
take n (x : xs) = (x : take n− 1 xs)

Proposition 7.10. (The ‘take’ lemma)
Let τ be a closed type and l, l′ : [τ].

∀n ∈ N.(take n l =[τ] take n l′) =⇒ l =[τ] l
′.

We reproduce Pitts’ proof (cf. (Pitts, 1997)) of Proposition 7.10 which uses
Proposition 7.7.

Proof. For a given type τ , define R ⊆ Exp[τ] × Exp[τ] by:

R:= {(l, l′)|∀n ∈ N(take n l =[τ] take n l′}.

We prove that R satisfies conditions (21) - (24). First of all, by the evaluation
rules and Kleene equivalence, the following properties hold: For all n ∈ N, x : τ
and l, xs : [τ],

(a) take n+ 1 l ⇓ [] ⇐⇒ l ⇓ [].

(b) take n+ 1 l ⇓ (x : xs) ⇐⇒ ∃xs′.(l ⇓ (x : xs′) ∧ xs =[τ] take n xs′).

Now suppose that l R l′, i.e., ∀n ∈ N.take n l = take n l′.

(1) To establish condition (21), we suppose that l ⇓ []. Then (a) implies that
take 1 l ⇓ []. Since l R l′, by definition of R, take 1 l =[τ] take 1 l′. Since
contextual equivalence is an FPC bisimulation, it follows that take 1 l′ ⇓
[]. Hence by (a) again, it holds that l′ ⇓ [].

(2) A symmetrical argument shows that R satisfies condition (22).

(3) To see that it satisfies condition (23), suppose l ⇓ (x : xs). Then by (b) for
any n ∈ N we have take n+1 l ⇓ (x : take n xs). Since l R l′, by definition

65

of R, take n+ 1 l =[τ] take n+ 1 l′. So since contextual equivalence is an
FPC bisimulation, it follows that there are terms x′ and xs′′ with

take n+ 1 l′ ⇓ (x′ : xs′′) ∧ x =τ x
′ ∧ take n xs =[τ] xs

′′.

By (b) again, l′ ⇓ (x′ : xs′) for some xs′ with xs′′ =[τ] take n xs′. We
need finally to verify that xs R xs′. But note that for all n we have
take n xs =[τ] xs

′′ =[τ] take n xs′. Thus we conclude that

∀n ∈ N.(take n xs =[τ] take n xs′).

(4) A symmetrical argument shows that R also satisfies condition (24).

Thus R is a [τ]-bisimulation. In particular, we have that R is a bisimulation
and so the required contextual equivalence is obtained.

Let us now provide an alternative proof of Proposition 7.10 by using Corol-
lary 7.2.

Proof. We prove by induction on m that for all l, l′ ∈ [τ], it holds that

∀n ∈ N.(take n l =[τ] take n l′) =⇒ l =m l′.

The base case is trivial and we proceed to the induction step.
Assume that the statement holds for the natural number m, we want to prove
that it holds for m+ 1.
Case 1: l =[τ] []
Since take 1 l =[τ] take 1 l′ =[τ] [], it follows that l′ =[τ] [], for otherwise if
l′ =[τ] (x : xs) it would have been the case that take 1 l′ =[τ] (x : []) 6=[τ] [].
Thus we have l =m+1 l

′ trivially.
Case 2: l =[τ] (x : xs)
In that case, l′ =[τ] (y : ys) for some terms y and ys. Again by applying take 1
to both the list, we have that x =τ y. Now assume for the purpose of induction
that l =m l′. Note that

idm+1(l) =[τ] idm+1(x : xs)
=[τ] (x : idm(xs))
=[τ] (y : idm(xs)).

Since l =[τ] (x : xs) and l′ =[τ] (y : ys), it holds that

∀n ∈ N.take n (x : xs) =[τ] take n (y : ys).

This implies that
∀n ∈ N.take n xs =[τ] take n ys.

The induction hypothesis then asserts that xs =m ys. Thus idm+1(l) =[τ] (y :
idm(xs)) =[τ] (y : idm(ys)) =[τ] idm+1(l′), i.e., l =m+1 l

′.

7.2.5 The filter-map property

The next sample application involves the filter function, which we define below.
filter : (τ → Bool)→ ([τ]→ [τ])

66

filter u [] = []
filter u (x : xs) = if u(x) then (x : filter u xs) else filter u xs

Proposition 7.11. For any u : (τ → Bool), v : (τ → τ) and l : [τ], it holds
that

filter u (map v l) =[τ] map v (filter (u ◦ v) l).

This proposition was established in (Pitts, 1997) based on an induction on
the depths of proofs of evaluation. Here we elaborate. Define the nth level
evaluation relation ⇓n (written as x ⇓n v) as follows. Replace in the axioms and
rule regarding ⇓ (see Figure 3) each occurrence of ⇓ by ⇓n in an axiom or the
premise of a rule and replacing ⇓ by ⇓n+1 in the conclusion of each rule. Then
of course we have:

x ⇓ v ⇔ ∃n ∈ N.(x ⇓n v) (28)

It suffices to show that there is a list bisimulation that relates filter u (map v l)
and map v (filter (u ◦ v) l). Usually it is Hobson’s choice.

Proof. Define

R:= {(filter u (map v l),map v (filter (u ◦ v) l))|l : [τ]}.

Instead of proving the three conditions of a list bisimulation directly, we deduce
them via (28), using the properties of ⇓n:

(1) ∀l.(filter u (map v l) ⇓n [] =⇒ map v (filter (u ◦ v) l ⇓ []).

(2) ∀l.(map v (filter (u ◦ v) l ⇓n [] =⇒ filter u (map v l) ⇓ []).

(3) ∀l, x, xs.(filter u (map v l) ⇓n (x : xs) =⇒
∃xs′.(map v (filter (u ◦ v) l) ⇓ (x : xs′) ∧ xs R xs′).

(4) ∀l, x, xs′.(map v (filter (u ◦ v) l) ⇓n (x : xs′) =⇒
∃xs.(filter u (map v l) ⇓ (x : xs) & xs R xs′).

The proofs of (1) - (4) are by induction on n.

We now prove Proposition 7.11 by using Corollary 7.2.

Proof. Given any l : [τ], we have two possibilities:

(1) There is n ∈ N such that tl(n)(l) =[τ] [].

(2) For all n ∈ N, tl(n)(l) 6=[τ] [].

Here tl(0)(l) := l and tl(n+1)(l) := tl(tl(n)(l)).
Those lists which satisfy (1) are called finite lists. For a finite list, we define its
length to be n ∈ N for which tl(n)(l) =[τ] []. Those lists which satisfy (2) are
called infinite lists.
We prove Proposition 7.11 for each of these cases.

(1) Finite lists
We prove by induction on the length of finite lists that

filter u (map v l) =[τ] map v (filter (u ◦ v) l).

67

Base case: n = 0.
In this case, l =[τ] []. On one hand, we have:

filter u (map v l) ≡ filter u (map v [])
=[τ] filter u []
=[τ] []

On the other hand, we have:

map v (filter (u ◦ v) l) ≡ map v (filter (u ◦ v) [])
=[τ] map v []
=[τ] []

Hence the statement holds.
Inductive step:
Assume that the statement holds for all finite lists of length n. We want
to prove that the statement holds for all finite lists of length n + 1. We
write l = (x : xs).

filter u (map v l) ≡ filter u (map v (x : xs))
=[τ] filter u (v(x) : map v xs)

=[τ]

{
filter u (map v xs) if u ◦ v(x) = F
(v(x) : filter u (map v xs)) if u ◦ v(x) = T

Ind. hyp.=[τ]

{
map v (filter (u ◦ v) xs) if u ◦ v(x) = F
(v(x) : map v (filter (u ◦ v) xs)) if u ◦ v(x) = T

(2) Infinite lists
We prove by induction on m that for all infinite lists l

filter u (map v l) =m map v (filter (u ◦ v) l).

Base case: m = 0. This holds trivially.
Inductive step: There are two possibilities:
(i) u ◦ v(hd(tl(n)(l))) =[τ] F for all n ∈ N.
Since the evaluations of filter u (map v l) and map v (filter (u ◦ v) l)
involve infinite unfoldings, it follows that both diverges. Hence the state-
ment holds.
(ii) There is a minimum n ∈ N such that u ◦ v(hd(tl(n)(l))) =[τ] T.
Then we have:

68

idm+1(filter u (map v l))
=[τ] idm+1(filter u (map v tl(n)(l))) (Kleene equiv.)
=[τ] idm+1(v(hd(tl(n)(l))) : filter u (map v tln+1(l))) (map & filter)
=[τ] (v(hd(tl(n)(l))) : idm(filter u (map v tln+1(l)))) (Lemma 7.3)
=[τ] (v(hd(tl(n)(l))) : idm(map v (filter (u ◦ v) tln+1(l)))) (Ind. hyp.)
=[τ] idm+1(v(hd(tl(n)(l))) : map v (filter (u ◦ v) tln+1(l))) (Lemma 7.3)
=[τ] idm+1(map v filter (u ◦ v) tl(n)(l)) (map & filter)
=[τ] idm+1(map v (filter (u ◦ v) l)). (Kleene equiv.)

The desired result then follows from Corollary 7.2.

Remark 7.12. We have investigated the reasoning powers derived from the
non-trivial pre-deflationary structure eσ, which leads one to wonder if those
derived from the deflationary structure dσ are even more powerful. This should
be investigated in our future works.

8 Conclusion and future work

The operational domain theory developed herein exploits the free algebra struc-
ture of the “default” recursive construction offered by the syntax (and the op-
erational semantics) of FPC. The categorical framework we chose facilitates a
relatively clean theory on which convenient principles of reasoning about pro-
grams are based. The present work is a follow-up on a much earlier report (Ho,
2006a).

In our future work, we shall explore:

1. the implication of Pitts’ work (Pitts, 1996) on relational properties of
domains in our operational setting; and

2. the possibility of developing an operational domain-theory that caters for
non-deterministic languages, such as (Hennessy and Ashcroft, 1980).

Acknowledgements. Many people have contributed to the birth and devel-
opment of ideas in this paper. Special thanks go to my PhD supervisor, M.H.
Escardó, whose deep insight and gentle advice I have always benefited from. I
am grateful to P.B. Levy for first suggesting product categories as an alterna-
tive categorical framework. Following this suggestion, I was further reassured
by M. Fiore that there should be no technical issues in proceeding with the use
of product categories. T. Streicher’s his timely advice emerging from a series of
email-discussions eventually gave rise to the operational algebraic compactness
result. I would also wish to acknowledge my colleagues in the Mathematics
and Mathematics Education Academic Group (NIE), particularly D. Zhao and
T.Y. Lee, concerning the operational proof of the minimal invariance property
of realisable functors.

69

References

M. Abadi and M.P. Fiore. Syntactic considerations on recursive types. In Pro-
ceedings of the 11th Annual IEEE Symposium on Logic In Computer Science,
pages 242–252. IEEE Computer Society Press, 1996.

S. Abramsky and A. Jung. Domain Theory, volume 3 of Handbook of Logic in
Computer Science. Clarendon Press, Oxford, 1994.

R. Bird. Introduction to Functional Programming using Haskell. Prentice Hall
International, 2nd edition, 1998.

R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall,
1988.

L. Birkedal and R. Harper. Relational Interpretations of Recursive Types in an
Operational Setting. Information and Computation, (155):3 – 63, 1999.

M.H. Escardo and W.K. Ho. Operational domain theory and topology of a
sequential language. In Proceedings of the 20th Annual IEEE Symposium on
Logic In Computer Science, pages 427 – 436. IEEE Computer Society Press,
2005.

M.P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. PhD the-
sis, University of Edinburgh, 1996. Distinguished Dissertations in Computer
Science.

M.P. Fiore and G.D. Plotkin. An Axiomatisation of Computationally Adequate
Domain-Theoretic Models of FPC. In Proceedings of the 10th Annual IEEE
Symposium on Logic In Computer Science, pages 92 – 102. IEEE Computer
Society Press, 1994.

P.J. Freyd. Algebraically complete categories. In Lecture Notes in Mathematics,
volume 1488, pages 95 – 104. Springer Verlag, 1991.

P.J. Freyd. Remarks on algebraically compact categories. In Applications of
Categories in Computer Science, volume 177, pages 95 – 106. Cambridge
University Press, 1992. Lecture Notes in Mathematics.

J. Gibbons and G. Hutton. Proof Methods for Corecursive Programs. Funda-
mentae Informaticae, 20:1 – 14, 2005.

G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, and D.S.
Scott. Continuous Lattices and Domains. Number 93 in Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge,
2003.

A. D. Gordon. Functional programming and input/output. In Distinguished
Dissertations in Computer Science. Cambridge University Press, 1994.

A.D. Gordon. Bisimilarity as a theory of functional programming. Notes Series:
BRICS-NS-95-3, BRICS, 1995. Department of Computer Science, University
of Aarhus.

70

M.C.B. Hennessy and E.A. Ashcroft. A mathematical semantics for a non-
deterministic typed lambda-calculus. Theoretical Computer Science, 11(3):
227–245, July 1980.

W.K. Ho. An Operational Domain-theoretic Treatment of Recursive Types. In
M. Mislove and S. Brookes, editors, Proceedings of the 22nd Conference on
Mathematical Foundations in Programming Semantics, number 158 in Elec-
tronic Notes in Theoretic Computer Science, pages 237–259, 2006a.

W.K. Ho. An operational domain theory and topology of sequential functional
languages. PhD thesis, The University of Brimingham, October 2006b.

D.J. Howe. Equality in lazy computation systems. In Proceedings of the 4th An-
nual Symposium on Logic In Computer Science, pages 198–203. IEEE Com-
puter Society Press, 1989.

D.J. Howe. Proving congruence of bisimulation in functional programming lan-
guages. Information and Computation, 124(2):103–112, February 1996.

G. Hutton and J. Gibbons. The Generic Approximation Lemma. Information
Processing Letters, 79(4):197 – 201, 2001.

S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 2nd
edition, 1998.

I.A. Mason, S.F. Smith, and C.L. Talcott. From operational semantics to domain
theory. Information and Computation, 128(1):26–47, 1996.

G. McCusker. Games and Full Abstraction for FPC. Information and Compu-
tation, (160):1–61, 2000.

A.M. Pitts. Relational Properties of Domains. Information and Computation,
127:66–90, 1996.

A.M. Pitts. Operationally-based theories of program equivalence. In P. Dybjer
and A.M. Pitts, editors, Semantics and Logics of Computation, Publications
of the Newton Institute, pages 241–298. Cambridge University Press, 1997.

G.D. Plotkin. Lectures on predomains and partial functions, 1985. Notes for
a course given at the Center for the Study of Languages and Information,
Stanford.

A. Rohr. A Universal Realizability Model for Sequential Functional Computa-
tion. PhD thesis, Technischen Universitat Darmstadt, July 2002.

A.K. Simpson. Recursive Types in Kleisli Categories. Available from
http://homepages.inf.ed.ac.uk/als/Research, 1992.

71

Contents

1 Introduction 1

2 The programming language FPC 2
2.1 The syntax . 3
2.2 Operational semantics . 4
2.3 Fixed point operator . 5
2.4 Some notations . 5
2.5 FPC contexts . 6

3 Foundations 9

4 FPC considered as a category 10
4.1 The category of FPC types . 10
4.2 Basic functors . 12
4.3 Realisable functors . 17

5 Operational minimal invariance 23
5.1 Twin morphisms . 23
5.2 Canonical unfolding of FPC closed types 25
5.3 Canonical pre-deflations and deflations 26
5.4 Compilation and canonical deflationary structure 31
5.5 Compilation of a context . 34
5.6 A crucial lemma . 34
5.7 Proof of functoriality . 38

6 Operational algebraic compactness 40
6.1 Operational algebraic compactness 40
6.2 Alternative choice of category . 43
6.3 On the choice of categorical frameworks 52

7 The Generic Approximation Lemma 57
7.1 The Generic Approximation Lemma 58
7.2 Sample applications . 58

7.2.1 List type and some related notations 58
7.2.2 The map-iterate property 60
7.2.3 Zipping two natural number lists 62
7.2.4 The ‘take’ lemma . 65
7.2.5 The filter-map property 66

8 Conclusion and future work 69

72

	Introduction
	The programming language FPC
	The syntax
	Operational semantics
	Fixed point operator
	Some notations
	FPC contexts

	Foundations
	FPC considered as a category
	The category of FPC types
	Basic functors
	Realisable functors

	Operational minimal invariance
	Twin morphisms
	Canonical unfolding of FPC closed types
	Canonical pre-deflations and deflations
	Compilation and canonical deflationary structure
	Compilation of a context
	A crucial lemma
	Proof of functoriality

	Operational algebraic compactness
	Operational algebraic compactness
	Alternative choice of category
	On the choice of categorical frameworks

	The Generic Approximation Lemma
	The Generic Approximation Lemma
	Sample applications
	List type and some related notations
	The map-iterate property
	Zipping two natural number lists
	The `take' lemma
	The filter-map property

	Conclusion and future work

