Technical Report M2010-07 September 2010 Mathematics and Mathematics Education National Institute of Education Singapore

On Real Roots of Flow Polynomials*

F.M. Dong[†]

Mathematics and Mathematics Education

National Institute of Education

Nanyang Technological University, Singapore 637616

Abstract

This article studies the real roots of the flow polynomial $F(G, \lambda)$ of a bridgeless graph G. Let W(G) be the set of vertices in G of degrees larger than 3. For any integer $k \geq 0$, let ξ_k be the largest real number in (1,2] such that $F(G,\lambda)$ has no real zeros in $(1,\xi_k)$ for all graphs G with $|W(G)| \leq k$. We show that ξ_k can be determined by considering a finite set of graphs and therefore deduce that $\xi_k = 2$ for $k \leq 2$, $\xi_3 = 1.430 \cdots$ and $\xi_4 = 1.361 \cdots$. We also show that for any bridgeless graph G, if W(G) is dominated by some component of G - W(G), then $F(G,\lambda)$ has no roots in (1,2). This result implies that $F(G,\lambda)$ has no zeros in (1,2) whenever $|W(G)| \leq 2$.

Keywords: matroid, graph, characteristic polynomial, chromatic polynomial, flow polynomial, root

1 Introduction

Following Tutte [14] (also see Brylawski and Oxley [2]), the flow polynomial of a graph G = (V, E) is the polynomial defined as

$$F(G,\lambda) = \sum_{E' \subseteq E} (-1)^{|E| - |E'|} \lambda^{|E'| + c(E') - |V|}, \tag{1.1}$$

where c(E') is the number of components of the spanning subgraph (V, E') of G. This definition is equivalent to the following basic properties of $F(G, \lambda)$ (see [14] also):

$$F(G,\lambda) = \begin{cases} 1, & \text{if } E = \emptyset; \\ F(G_1,\lambda)F(G_2,\lambda), & \text{if } G = G_1 \cup G_2; \\ 0, & \text{if } G \text{ has a bridge}; \\ (t-1)F(G-e,\lambda), & \text{if } e \text{ is a loop}; \\ F(G/e,\lambda) - F(G-e,\lambda), & \text{otherwise}, \end{cases}$$
(1.2)

where G/e and G-e are the graphs obtained from G by contracting e and deleting e respectively, and $G_1 \cup G_2$ is the disjoint union of graphs G_1 and G_2 .

^{*}Partially supported by NIE AcRf funding (RI 5/06 DFM) of Singapore.

[†]Corresponding author. Email: fengming.dong@nie.edu.sg.