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Abstract

This article studies the real roots of the flow polynomial F'(G, \) of a bridgeless graph
G. Let W(G) be the set of vertices in G of degrees larger than 3. For any integer k > 0,
let & be the largest real number in (1,2] such that F(G, A) has no real zeros in (1, &)
for all graphs G with |W(G)| < k. We show that & can be determined by considering
a finite set of graphs and therefore deduce that & = 2 for k < 2, {5 = 1.430--- and
&4, = 1.361---. We also show that for any bridgeless graph G, if W(G) is dominated by
some component of G — W(G), then F(G, A) has no roots in (1,2). This result implies
that F/(G, ) has no zeros in (1,2) whenever |[W(G)| < 2.
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1 Introduction

Following Tutte [14] (also see Brylawski and Oxley [2]), the flow polynomial of a graph
G = (V, E) is the polynomial defined as

FGN) = 3 (~1)EHE N E )=V, (1.1)
E'CE

where ¢(E’) is the number of components of the spanning subgraph (V,E’) of G. This
definition is equivalent to the following basic properties of F/(G, A) (see [14] also):

1, if £ =0;
F(G1,\)F(Ga, N, if G = G1UGy;

F(G,\) =1 0, if G has a bridge; (1.2)
(t—1F(G—e,N), if e is a loop;

F(G/e,\) — F(G —e,\),  otherwise,

where G/e and G — e are the graphs obtained from G by contracting e and deleting e
respectively, and G1 U G4 is the disjoint union of graphs G and Gbs.
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