The 3-connectivity of a Graph and the Multiplicity of Zero '2' of its Chromatic Polynomial*

F.M. Dong ${ }^{\dagger}$
Mathematics and Mathematics Education
National Institute of Education
Nanyang Technological University, Singapore 637616
K.M. Koh
Department of Mathematics
National University of Singapore, Singapore 117543

Abstract

Let G be a graph of order n, maximum degree Δ and minimum degree δ. Let $P(G, \lambda)$ be the chromatic polynomial of G. It is known that the multiplicity of zero ' 0 ' of $P(G, \lambda)$ is one if G is connected; and the multiplicity of zero ' 1 ' of $P(G, \lambda)$ is one if G is 2 -connected. Is the multiplicity of zero ' 2 ' of $P(G, \lambda)$ at most one if G is 3 -connected? In this paper, we first construct an infinite family of 3 -connected graphs G such that the multiplicity of zero ' 2 ' of $P(G, \lambda)$ is more than one, and then characterize 3-connected graphs G with $\Delta+\delta \geq n$ such that the multiplicity of zero ' 2 ' of $P(G, \lambda)$ is at most one. In particular, we show that for a 3-connected graph G, if $\Delta+\delta \geq n$ and $\left(\Delta, \delta_{3}\right) \neq(n-3,3)$, where δ_{3} is the third minimum degree of G, then the multiplicity of zero ' 2 ' of $P(G, \lambda)$ is at most one.

Keywords: connectivity, chromatic polynomial, chromatic zero,

[^0]
[^0]: *Supported by NIE AcRf funding (RI 5/06 DFM) of Singapore.
 ${ }^{\dagger}$ Corresponding author. Email: fengming.dong@nie.edu.sg.

