Technical Report M2011-1 April 2011 Mathematics and Mathematics Education National Institute of Education Singapore

Chromatic Roots of a Ring of Four Cliques

F.M. Dong*

Mathematics and Mathematics Education, National Institute of Education Nanyang Technological University, Singapore

Gordon Royle

School of Mathematics & Statistics, University of Western Australia Email: gordon@maths.uwa.edu.au

Dave Wagner

Department of Combinatorics and Optimization, University of Waterloo Email: dgwagner@math.uwaterloo.ca

April 27, 2011

Abstract

For any positive integers a, b, c, d, let $R_{a,b,c,d}$ be the graph obtained from the complete graphs K_a, K_b, K_c and K_d by adding edges joining every vertex in K_a and K_c to every vertex in K_b and K_d . This paper shows that for arbitrary positive integers a, b, c and d, every root of the chromatic polynomial of $R_{a,b,c,d}$ is either a real number or a complex number with its real part equal to (a + b + c + d - 1)/2.

Keywords: graph, chromatic polynomial, chromatic root, ring of cliques

1 Introduction

A ring of cliques is a graph whose vertex set is the disjoint union of cliques, arranged in a cyclic order, such that the vertices of each clique are joined to all the vertices in the two neighbouring cliques. If the cliques have size $a_1, a_2, ..., a_n$ then we denote this graph by $R_{a_1,a_2,...,a_n}$. Figure 1 shows the graph $R_{2,2,3,3}$.

Graphs with this structure have occurred several times previously in the study of chromatic polynomials and their roots. In particular, in proving that there are non-chordal graphs with integer chromatic roots, Read [6] considered the graphs in this family with $a_1 = 1$ (and he also used slightly different notation). Rings of cliques cropped up again recently in a preliminary investigation of the *algebraic properties* of chromatic roots (Cameron [1]) and in the course

^{*}Corresponding author. Email: fengming.dong@nie.edu.sg.

Figure 1: The graph $R_{2,2,3,3}$

of this investigation, the chromatic roots of many of these graphs were computed. When the chromatic roots of the ring-of-clique graphs with exactly four cliques and a fixed number of vertices were plotted, an intriguing pattern was observed — all the complex chromatic roots lie on a single vertical line. Figure 2 shows the union of the chromatic roots of the 12-vertex graphs of the form $R_{a,b,c,d}$.

Faced with such a striking empirically-observed pattern, we were led to explain it theoretically. This appears to require a surprisingly intricate argument, but eventually we obtain the following result:

Theorem 1 For arbitrary non-negative integers a, b, c and d the chromatic roots of $R_{a,b,c,d}$ are either real, or complex with real part equal to (a + b + c + d - 1)/2.

The overall structure of the argument is as follows: the chromatic polynomial $P(R_{a,b,c,d}, \lambda)$ is first expressed as the product of linear factors and a factor $Q_{a,b,c,d}(\lambda)$. It then suffices to show that the complex roots of $Q_{a,b,c,d}(\lambda)$ all lie on the vertical line $\Re(\lambda) = (a+b+c+d-1)/2$ in the complex λ -plane. Next the polynomial $F_{a,p,q,n}(z)$ is defined to be $Q_{a,b,c,d}(z+(a+b+c+d-1)/2)$ thus translating the vertical line supposed to contain the roots to the imaginary axis and also reparameterizing the problem (in a somewhat counterintuitive way). Then $F_{a,p,q,n}$ is shown to be an *even* polynomial and we define a fourth polynomial $W_{a,p,q,n}$ by $W_{a,p,q,n}(z^2) = F_{a,p,q,n}(z)$. The proof is completed by demonstrating that $W_{a,p,q,n}$ is real-rooted using polynomial interleaving techniques, and therefore $F_{a,p,q,n}$ has only real or pure imaginary roots as required.

Figure 2: Chromatic roots of the graphs $R_{a,b,c,d}$ where a+b+c+d=12.

2 Basics

For any graph G and any positive integer λ , let $P(G,\lambda)$ be the number of mappings ϕ from V(G) to $\{1,2,\dots,\lambda\}$ such that $\phi(u) \neq \phi(v)$ for every two adjacent vertices u and v in G. It is well-known that $P(G,\lambda)$ is a polynomial in λ , called the chromatic polynomial of G.

The chromatic polynomial of a graph G has the following properties (see, for instance, [3, 5, 7, 8]), which we will apply later.

Proposition 1 Let G be a simple graph of order at least 2.

(i) If u and v are two non-adjacent vertices in G, then

$$P(G,\lambda) = P(G+uv,\lambda) + P(G/uv,\lambda),\tag{1}$$

where G + uv is the graph obtained from G by adding the edge joining u and v, and G/uv is the graph obtained from G by identifying u and v and removing all parallel edges but one.

(ii) If u is a vertex in G which is adjacent to all other vertices in G, then

$$P(G,\lambda) = \lambda P(G - u, \lambda - 1), \tag{2}$$

where G - u is the graph obtained from G by removing u.

If a = 0, $R_{a,b,c,d}$ is a chordal graph and its chromatic polynomial is

$$P(R_{0,b,c,d},\lambda) = \frac{(\lambda)_{b+c}(\lambda)_{c+d}}{(\lambda)_c},\tag{3}$$

and if $a \ge 1$ and $c \ge 1$, then applying Proposition 1 repeatedly yields that

$$P(R_{a,b,c,d},\lambda) = \lambda P(R_{a-1,b,c,d},\lambda - 1) + c\lambda P(R_{a-1,b,c-1,d},\lambda - 1).$$
(4)

For a non-negative integer a and real numbers b, c and d, define a polynomial $Q_{a,b,c,d}(z)$ in z as follows: $Q_{0,b,c,d}(z) = 1$ and for $a \ge 1$,

$$Q_{a,b,c,d}(z) = (z - b - c)(z - c - d)Q_{a-1,b,c,d}(z - 1) + c(z - a - c + 1)Q_{a-1,b,c-1,d}(z - 1).$$
 (5)

It is clear that $Q_{a,b,c,d}(z)$ is a polynomial of order 2a in z.

Proposition 2 Let a, b, c and d be any non-negative integers. Then

$$P(R_{a,b,c,d},\lambda) = \frac{(\lambda)_{b+c}(\lambda)_{c+d}}{(\lambda)_{a+c}} Q_{a,b,c,d}(\lambda).$$
(6)

Proof. If a = 0, then (6) follows from (3) and the definition of $Q_{a,b,c,d}(\lambda)$. Now assume that $a \ge 1$. By (4) and induction, we have

$$P(R_{a,b,c,d},\lambda) = \lambda P(R_{a-1,b,c,d},\lambda-1) + c\lambda P(R_{a-1,b,c-1,d},\lambda-1)$$

$$= \lambda \frac{(\lambda-1)_{b+c}(\lambda-1)_{c+d}}{(\lambda-1)_{a+c-1}} Q_{a-1,b,c,d}(\lambda-1)$$

$$+c\lambda \frac{(\lambda-1)_{b+c-1}(\lambda-1)_{c+d-1}}{(\lambda-1)_{a+c-2}} Q_{a-1,b,c-1,d}(\lambda-1)$$

$$= \frac{(\lambda)_{b+c}(\lambda)_{c+d}}{(\lambda)_{a+c}} [(\lambda-b-c)(\lambda-c-d)Q_{a-1,b,c,d}(\lambda-1)$$

$$+c(\lambda-a-c+1)Q_{a-1,b,c-1,d}(\lambda-1)].$$
 (7)

The result then follows.

Assume that $\binom{x}{0} = 1$ and $\binom{x}{r} = x(x-1)\cdots(x-r+1)/r!$ for any positive integer r and any complex number x.

Proposition 3 For any non-negative integer a and real numbers b, c and d,

$$Q_{a,b,c,d}(\lambda) = a! \sum_{i=0}^{a} i! (a-i)! {c \choose i} {\lambda-b-c \choose a-i} {\lambda-c-d \choose a-i} {\lambda-a-c+i \choose i}.$$
 (8)

Proof. It is trivial if a = 0 as $Q_{0,b,c,d}(z) = 1$. Now assume that $a \ge 1$. By (5) and induction,

$$Q_{a,b,c,d}(\lambda) = (\lambda - b - c)(\lambda - c - d)Q_{a-1,b,c,d}(\lambda - 1) + c(\lambda - a - c + 1)Q_{a-1,b,c-1,d}(\lambda - 1)$$

$$= (\lambda - b - c)(\lambda - c - d)(a - 1)! \sum_{i=0}^{a-1} \left\{ i!(a - i - 1)! \binom{c}{i} \binom{\lambda - b - c - 1}{a - i - 1} \right\}$$

$$\binom{\lambda - c - d - 1}{a - i - 1} \binom{\lambda - a - c + i}{i}$$

$$+c(\lambda - a - c + 1)(a - 1)! \sum_{i=0}^{a-1} \left\{ i!(a - i - 1)! \binom{c - 1}{i} \binom{\lambda - b - c}{a - i - 1} \right\}$$

$$\binom{\lambda - c - d}{a - i - 1} \binom{\lambda - a - c + i + 1}{i}$$

$$= (a - 1)! \sum_{i=0}^{a-1} i!(a - i)!(a - i) \binom{c}{i} \binom{\lambda - b - c}{a - i} \binom{\lambda - c - d}{a - i} \binom{\lambda - a - c + i + 1}{i + 1}$$

$$+(a - 1)! \sum_{i=0}^{a-1} i!(a - i - 1)!(i + 1)^2 \binom{c}{i + 1} \binom{\lambda - b - c}{a - i - 1} \binom{\lambda - c - d}{a - i - 1} \binom{\lambda - a - c + i + 1}{i + 1}$$

$$= (a - 1)! \sum_{i=0}^{a-1} i!(a - i)!(a - i) \binom{c}{i} \binom{\lambda - b - c}{a - i} \binom{\lambda - c - d}{a - i} \binom{\lambda - a - c + i}{i}$$

$$+(a - 1)! \sum_{i=1}^{a} (i - 1)!(a - i)!i^2 \binom{c}{i} \binom{\lambda - b - c}{a - i} \binom{\lambda - c - d}{a - i} \binom{\lambda - a - c + i}{i}$$

$$= a! \sum_{i=0}^{a} i!(a - i)! \binom{c}{i} \binom{\lambda - b - c}{a - i} \binom{\lambda - c - d}{a - i} \binom{\lambda - a - c + i}{i}$$

$$(9)$$

The result then follows. \Box

For any non-negative integer a and real numbers p, q, n, define

$$F_{a,p,q,n}(z) = a! \sum_{i=0}^{a} i! (a-i)! \binom{a+p+q-1}{i} \binom{z+n+i-1}{i} \binom{z-p}{a-i} \binom{z-q}{a-i}.$$
 (10)

Then (8) and (10) implies that $Q_{a,b,c,d}(z + (a+b+c+d-1)/2) = F_{a,p,q,n}(z)$, where

$$\begin{cases}
p = (b+c-a-d+1)/2 \\
q = (c+d-a-b+1)/2 \\
n = (b+d-a-c+1)/2.
\end{cases}$$
(11)

In the next section, we shall show that $F_{a,p,q,n}(z)$ is an even polynomial in z, and the polynomial obtained from $F_{a,p,q,n}(z)$ by replacing z^2 by z (i.e., $W_{a,p,q,n}(z)$ defined on Page 9) has only real roots for an arbitrary positive integer a and arbitrary real numbers p,q,n satisfying the condition that p+q,p+n and q+n are all non-negative (see Proposition 10). This result implies that every root of $F_{a,p,q,n}(z)$ is either a real number or a complex number with its real part equal to 0 if a is a positive integer and p+q,p+n and q+n are all non-negative real

numbers. For arbitrary positive integers a, b, c, d, if $a \leq \min\{b, c, d\}$ and p, q and n are given in (11), then p + q = c - a + 1 > 0, p + n = b - a + 1 > 0 and q + n = d - a + 1 > 0. Since $Q_{a,b,c,d}(z + (a + b + c + d - 1)/2) = F_{a,p,q,n}(z)$, where p, q and n are given in (11), the following result is obtained.

Proposition 4 For arbitrary positive integers a, b, c and d, if $a \leq \min\{b, c, d\}$, then every root of $Q_{a,b,c,d}(z)$ is either a real number or a complex number with its real part equal to (a+b+c+d-1)/2. Therefore, for arbitrary non-negative integers a, b, c and d, every root of $P(R_{a,b,c,d},\lambda)$ is either a real number or a complex number with its real part equal to (a+b+c+d-1)/2.

3 The polynomial $F_{a,p,q,n}(z)$

From the definition of $F_{a,p,q,n}(z)$, we have $F_{0,p,q,n}(z) = 1$ and $F_{1,p,q,n}(z) = z^2 + pq + pn + qn$. We shall show that $F_{a,p,q,n}(z)$ has a recursive expression in terms of $F_{a-1,p,q,n}(z)$ and $F_{a-2,p,q,n}(z)$. We first prove two properties of $F_{a,p,q,n}(z)$.

Proposition 5 For any integer $a \ge 1$ and arbitrary real numbers p, q, n, if p + q = 0, then

$$F_{a,p,q,n}(z) = (z-p)(z-q)F_{a-1,p+1,q+1,n}(z).$$
(12)

Proof. For $a \ge 1$,

$$F_{a,p,q,n}(z) = a! \sum_{i=0}^{a} i! (a-i)! \binom{a-1}{i} \binom{z+n+i-1}{i} \binom{z-p}{a-i} \binom{z-q}{a-i}$$

$$= (z-p)(z-q)(a-1)!$$

$$\sum_{i=0}^{a-1} i! (a-1-i)! \binom{a}{i} \binom{z+n+i-1}{i} \binom{z-p-1}{a-1-i} \binom{z-q-1}{a-1-i}$$

$$= (z-p)(z-q) \times F_{a-1,p+1,q+1,n}(z). \tag{13}$$

Proposition 6 For any integer $a \ge 1$ and arbitrary real numbers p, q, n,

$$F_{a,p+1,q,n}(z) - F_{a,p,q,n}(z) = a(a+n+q-1)F_{a-1,p+1,q,n}(z).$$
(14)

Proof. For $a \ge 1$,

$$F_{a,p+1,q,n}(z) - F_{a,p,q,n}(z)$$

$$= a! \sum_{i=0}^{a} \left\{ i!(a-i)! \binom{z+n+i-1}{i} \binom{z-q}{a-i} \right\}$$

6

$$\left(\binom{a+p+q}{i}\binom{z-p-1}{a-i} - \binom{a+p+q-1}{i}\binom{z-p}{a-i}\right)\right\} \\
= a! \sum_{i=0}^{a} \left\{i!(a-i)!\binom{z+n+i-1}{i}\binom{z-q}{a-i}\right. \\
\left(\binom{a+p+q-1}{i-1}\binom{z-p-1}{a-i} - \binom{a+p+q-1}{i}\binom{z-p-1}{a-i-1}\right)\right\} \\
= a! \sum_{i=1}^{a} i!(a-i)!\binom{z+n+i-1}{i}\binom{z-q}{a-i}\binom{a+p+q-1}{i-1}\binom{z-p-1}{a-i} \\
-a! \sum_{i=0}^{a-1} i!(a-i)!\binom{z+n+i-1}{i}\binom{z-q}{a-i}\binom{a+p+q-1}{i}\binom{z-p-1}{a-i-1} \\
= a! \sum_{i=0}^{a-1} (i+1)!(a-i-1)!\binom{z+n+i}{i}\binom{z-q}{a-i-1}\binom{a+p+q-1}{i}\binom{z-p-1}{a-i-1} \\
-a! \sum_{i=0}^{a-1} i!(a-i)!\binom{z+n+i-1}{i}\binom{z-q}{a-i-1}\binom{a+p+q-1}{i}\binom{z-p-1}{a-i-1} \\
= (n+q+a-1)a! \\
\sum_{i=0}^{a-1} i!(a-1-i)!\binom{z+n+i-1}{i}\binom{z-q}{a-1-i}\binom{a+p+q-1}{i}\binom{z-p-1}{a-i-1} \\
= a(a+n+q-1)F_{a-1,p+1,q,n}(z). \tag{15}$$

Now we can prove that $F_{a,p,q,n}(z)$ can be expressed in terms of $F_{a-1,p,q,n}(z)$ and $F_{a-2,p,q,n}(z)$.

Proposition 7 Let p, q, n be arbitrary real numbers. For any integer $a \ge 2$,

$$F_{a,p,q,n}(z) = (z^2 + (a-1)(2p+2q+2n+2a-3) + pq + pn + qn)F_{a-1,p,q,n}(z)$$
$$-(a-1)(p+q+a-2)(q+n+a-2)(p+n+a-2)F_{a-2,p,q,n}(z).$$
(16)

Proof. By the definition of $F_{a,p,q,n}(z)$, we have $F_{0,p,q,n}(z) = 1$, $F_{1,p,q,n}(z) = z^2 + pq + pn + qn$ and

$$F_{2,p,q,n}(z) = z^4 + (2q + 2pq + 1 + 2pn + 2p + 2qn + 2n)z^2 + pq^2 + pq$$

$$+qn + q^2n + p^2q^2 + p^2n^2 + p^2q + 4pqn + pn^2 + 2p^2qn$$

$$+pn + 2pq^2n + 2pqn^2 + qn^2 + q^2n^2 + p^2n.$$
(17)

Thus it can be verified that (16) holds when a = 2.

Assume that (16) holds for every integer $2 \le a < k$, where $k \ge 3$. Now consider the case that a = k.

By the definition of $F_{a,p,q,n}(z)$, $F_{a,p,q,n}(z)$ is also a polynomial of order a in p. Let q, n, z be any fixed real numbers. If (16) holds for all numbers p in the set $\{-q+r: r=0,1,2,\cdots\}$, then the result is proven.

By assumption on a, (16) holds for $F_{a-1,-q+1,q+1,n}(z)$ and thus

$$F_{a-1,-q+1,q+1,n}(z)$$
= $(z^2 - 5a + 2an + 2a^2 + 3 - 2n - q^2)F_{a-2,-q+1,q+1,n}(z)$
 $-(a-2)(a-1)(-q-2+n+a)(q-2+n+a)F_{a-3,-q+1,q+1,n}(z).$

By Proposition 5, for any integer $m \geq 1$,

$$F_{m,-q,q,n}(z) = (z^2 - q^2)F_{m-1,-q+1,q+1,n}(z).$$

Hence

$$F_{a,-q,q,n}(z) = (z^2 - 5a + 2an + 2a^2 + 3 - 2n - q^2)F_{a-1,-q,q,n}(z)$$
$$-(a-2)(a-1)(-q-2+n+a)(q-2+n+a)F_{a-2,-q,q,n}(z),$$

implying that (16) holds for $F_{a,-q,q,n}(z)$.

In the remaining part of this proof, we shall show that if (16) holds for $F_{a,p,q,n}(z)$, then (16) holds for $F_{a,p+1,q,n}(z)$. Assume (16) holds for $F_{a,p,q,n}(z)$, and so

$$F_{a,p,q,n}(z) = (z^2 + (a-1)(2p+2q+2n+2a-3) + pq + pn + qn)F_{a-1,p,q,n}(z)$$
$$-(a-1)(p+q+a-2)(q+n+a-2)(p+n+a-2)F_{a-2,p,q,n}(z).$$
(18)

By assumption on a, (16) holds for $F_{a-1,p+1,q,n}(z)$ and so

$$F_{a-1,p+1,q,n}(z) = (z^2 + (a-2)(2p+2q+2n+2a-3) + (p+1)(n+q) + qn)F_{a-2,p+1,q,n}(z) - (a-2)(p+q+a-2)(q+n+a-3)(p+n+a-2)F_{a-3,p+1,q,n}(z).$$
(19)

By Proposition 6, (19) and (19), we have

$$\begin{split} F_{a,p+1,q,n}(z) &= F_{a,p,q,n}(z) + a(a+q+n-1)F_{a-1,p+1,q,n}(z) \\ &= (z^2 + (a-1)(2p+2q+2n+2a-3) + pq + pn + qn)F_{a-1,p,q,n}(z) \\ &- (a-1)(p+q+a-2)(q+n+a-2)(p+n+a-2)F_{a-2,p,q,n}(z) \\ &+ a(a+q+n-1)F_{a-1,p+1,q,n}(z) \\ &= (z^2 + (a-1)(2p+2q+2n+2a-3) + pq + pn + qn) \\ &(F_{a-1,p+1,q,n}(z) - (a-1)(a+q+n-2)F_{a-2,p+1,q,n}(z)) \\ &- (a-1)(p+q+a-2)(q+n+a-2)(p+n+a-2) \\ &(F_{a-2,p+1,q,n}(z) - (a-2)(a+q+n-3)F_{a-3,p+1,q,n}(z)) \\ &+ a(a+q+n-1)F_{a-1,p+1,q,n}(z) \end{split}$$

$$= (z^{2} + (a-1)(2p + 2q + 2n + 2a - 3) + pq + pn + qn)$$

$$(F_{a-1,p+1,q,n}(z) - (a-1)(a+q+n-2)F_{a-2,p+1,q,n}(z))$$

$$-(a-1)(p+q+a-2)(q+n+a-2)(p+n+a-2)F_{a-2,p+1,q,n}(z)$$

$$+(a-1)(a+q+n-2)(-F_{a-1,p+1,q,n}(z) +$$

$$(z^{2} + (a-2)(2p+2q+2n+2a-3) + (p+1)(n+q) + qn)F_{a-2,p+1,q,n}(z))$$

$$+a(a+q+n-1)F_{a-1,p+1,q,n}(z)$$

$$= (z^{2} + (a-1)(2p+2q+2n+2a-1) + (p+1)(n+q) + qn)F_{a-1,p+1,q,n}(z)$$

$$-(a-1)(p+q+a-1)(q+n+a-2)(p+n+a-1)F_{a-2,p+1,q,n}(z).$$

Thus (16) holds for $F_{a,p+1,q,n}(z)$. Hence (16) holds for $F_{a,p,q,n}(z)$ for all numbers p in the set $\{q+r: r=0,1,2,\cdots\}$ and therefore the result is proved.

Since $F_{0,p,q,n}(z) = 1$ and $F_{1,p,q,n}(z) = z^2 + pq + pn + qn$, Proposition 7 implies that $F_{a,p,q,n}(z)$ is an even polynomial in z. For any non-negative integer a and real numbers p,q,n, let $W_{a,p,q,n}(z)$ be the polynomial in z defined as follows: $W_{0,p,q,n}(z) = 1$, $W_{1,p,q,n}(z) = z + pq + pn + qn$ and for $a \ge 2$,

$$W_{a,p,q,n}(z) = (z + (a-1)(2p + 2q + 2n + 2a - 3) + pq + pn + qn)W_{a-1,p,q,n}(z)$$
$$-(a-1)(p+q+a-2)(q+n+a-2)(p+n+a-2)W_{a-2,p,q,n}(z).$$
(20)

Thus it is clear that $F_{a,p,q,n}(z) = W_{a,p,q,n}(z^2)$.

For two non-increasing sequences (a_1, a_2, \dots, a_m) and (b_1, b_2, \dots, b_n) of real numbers, we say the first interleaves the second if m = n + 1 and $(a_1, b_1, a_2, b_2, \dots, a_n, b_n, a_{n+1})$ is an non-increasing sequence, or m = n and $(a_1, b_1, a_2, b_2, \dots, a_n, b_n)$ is an non-increasing sequence. If both polynomials f(x) and g(x) in x with real coefficients have only real roots and the non-increasing sequence formed by all roots of f(x) interleaves the non-increasing sequence formed by all roots of g(x), then we say f(x) interleaves g(x). We need to apply the following result given in Section 1.3 of [4]. More details on polynomials with only real roots can be found in [2, 4].

Proposition 8 ([4]) Let f(x) and g(x) be polynomials with real coefficients and with positive leading coefficients and u and v be any real numbers. If f(x) interleaves g(x) and $v \le 0$, then (x - u)f(x) + vg(x) interleaves f(x).

Applying Proposition 8, we can get the following result.

Proposition 9 Let a be any positive integer and p, q, n be any real numbers.

(i) If
$$(p+q)(n+q)(n+p) \ge 0$$
, then $W_{2,p,q,n}(z)$ interleaves $W_{1,p,q,n}(z)$.

(ii) If $a \ge 3$, $(p+q+a-2)(q+n+a-2)(p+n+a-2) \ge 0$ and $W_{a-1,p,q,n}(z)$ interleaves $W_{a-2,p,q,n}(z)$, then $W_{a,p,q,n}(z)$ interleaves $W_{a-1,p,q,n}(z)$.

Proof. By the definition of $W_{a,p,q,n}(z)$, $W_{1,p,q,n}(z) = z + pq + pn + qn$ and

$$W_{2,p,q,n}(z) = (z + 2p + 2q + 2n + 1 + pq + pn + qn)(z + pq + pn + qn) - (p+q)(q+n)(p+n).$$
(21)

As the only root of $W_{1,p,q,n}(z)$ is -pq-pn-qn and $W_{2,p,q,n}(-pq-pn-qn)=-(p+q)(n+q)(n+p) \le 0$, $W_{2,p,q,n}(z)$ interleaves $W_{1,p,q,n}(z)$. So (i) holds.

By Proposition 7,

$$F_{a,p,q,n}(z) = (z^2 + (a-1)(2p + 2q + 2n + 2a - 3) + pq + pn + qn)F_{a-1,p,q,n}(z)$$
$$-(a-1)(p+q+a-2)(q+n+a-2)(p+n+a-2)F_{a-2,p,a,n}(z). (22)$$

Since $-(a-1)(p+q+a-2)(q+n+a-2)(p+n+a-2) \leq 0$ and $W_{a-1,p,q,n}(z)$ interleaves $W_{a-2,p,q,n}(z)$, Proposition 8 implies that $W_{a,p,q,n}(z)$ interleaves $W_{a-1,p,q,n}(z)$. Hence (ii) holds. \Box

Notice that $W_{a,p,q,n}(z) = W_{a,q,p,n}(z) = W_{a,n,q,p}(z)$ holds for arbitrary real numbers p,q,n and non-negative integer a, we assume that $p \leq q \leq n$ in the following.

Proposition 10 Let p, q, n be arbitrary real numbers with $p \le q \le n$ and $p + q \ge 0$. Then, for every integer $a \ge 2$, $W_{a,p,q,n}(z)$ interleaves $W_{a-1,p,q,n}(z)$. Therefore, for every positive integer $a, W_{a,p,q,n}(z)$ has only real roots and every root of $F_{a,p,q,n}(z)$ is either a real number or a complex number with its real part equal to 0.

Proof. Since $p+q \geq 0$ and $p \leq q \leq n$, we have $q+n \geq p+n \geq 0$ and so Proposition 9 (i) implies that $W_{2,p,q,n}(z)$ interleaves $W_{1,p,q,n}(z)$. Then, by Proposition 9 (ii), $W_{a,p,q,n}(z)$ interleaves $W_{a-1,p,q,n}(z)$ for every integer $a \geq 3$.

By the discussion immediately preceding Proposition 4, it follows that for all positive integers a, b, c, d with $a \leq \min\{b, c, d\}$, the hypotheses of Proposition 10 are satisfied and hence we have proved Theorem 1.

4 Further properties of $F_{a,p,q,n}$ and $W_{a,p,q,n}$

Even if p + q < 0, there are still some situations in which $W_{a,p,q,n}(z)$ has only real roots. In this section we consider these, although they do not correspond to values of the parameters a, p, q and n that arise from rings of cliques. We need to apply the following result on the factorization of $F_{a,p,q,n}(z)$ when a + p + n = 1 or a + p + n = 2.

Proposition 11 Let a be an integer with $a \ge 1$ and p, q, n be arbitrary real numbers.

(i) If a + p + n = 1, then

$$F_{a,p,q,n}(z) = \prod_{j=0}^{a-1} (z^2 - (n+j)^2).$$
 (23)

(ii) If a + p + n = 2, then

$$F_{a,p,q,n}(z) = \left(z^2 + (p-1)(n-1) + aq\right) \prod_{j=0}^{a-2} (z^2 - (n+j)^2).$$
 (24)

Proof. (i) If a + p + n = 1, then

$$i!(a-i)! {z-p \choose a-i} {z+n+i-1 \choose i} = \prod_{i=0}^{a-1} (z+n+j).$$

Thus

$$F_{a,p,q,n}(z) = a! \sum_{i=0}^{a} i! (a-i)! \binom{a+p+q-1}{i} \binom{z-p}{a-i} \binom{z-q}{a-i} \binom{z+n+i-1}{i}$$

$$= a! \prod_{j=0}^{a-1} (z+n+j) \sum_{i=0}^{a} \binom{a+p+q-1}{i} \binom{z-q}{a-i}$$

$$= a! \prod_{j=0}^{a-1} (z+n+j) \binom{a+p+q-1+z-q}{a}$$

$$= a! \prod_{j=0}^{a-1} (z+n+j) \binom{z-n}{a}$$

$$= \prod_{i=0}^{a-1} (z^2-(n+j)^2). \tag{25}$$

Thus (i) holds.

(ii) Now let a + p + n = 2. Since $F_{1,p,q,n}(z) = z^2 + pq + pn + qn$, it is easy to verify that (ii) holds when a = 1. Assume that (ii) holds for any integer $1 \le a < k$, where $k \ge 2$. Now let a = k.

Since a + p + n = 2, by Proposition 7,

$$F_{a,p,q,n}(z) = (z^2 + (a-1)(2p + 2q + 2n + 2a - 3) + pq + pn + qn)F_{a-1,p,q,n}(z).$$

As a-1+p+n=1, by (i) of this result, we have

$$F_{a-1,p,q,n}(z) = \prod_{j=0}^{a-2} (z^2 - (n+j)^2).$$

Since p + n + a = 2, it can be verified that

$$(a-1)(2p+2q+2n+2a-3) + pq + pn + qn = (p-1)(n-1) + aq.$$

Hence (ii) also holds. \Box

Proposition 12 Let p, q, n be arbitrary real numbers with $p \le q \le n$.

- (i) If p + q is a negative integer, then for every integer a with $a \geq 2 p q$, $W_{a,p,q,n}(z)$ interleaves $W_{a-1,p,q,n}(z)$.
- (ii) If q + n is an integer, then for every integer a with $\max\{2, 2 q n\} \le a \le 2 p n$, $W_{a,p,q,n}(z)$ interleaves $W_{a-1,p,q,n}(z)$.

Proof. (i) First consider the case that a=2-p-q. Since $p+q\leq -1$, we have $a\geq 3$. Proposition 11 implies that $W_{a,p,q,n}(z)$ interleaves $W_{a-1,p,q,n}(z)$.

Now assume that a > 2 - p - q and $W_{a-1,p,q,n}(z)$ interleaves $W_{a-2,p,q,n}(z)$. Since a > 2 - p - q, we have $a + p + q - 2 \ge 1$ and so $a + q + n - 2 \ge a + p + n - 2 \ge a + p + q - 2 \ge 1$. Thus Proposition 9 (ii) implies that $W_{a,p,q,n}(z)$ interleaves $W_{a-1,p,q,n}(z)$. Therefore (i) holds.

(ii) The result is trivial if $\max\{2, 2-q-n\} > 2-p-n$. Now assume that $\max\{2, 2-q-n\} \le 2-p-n$.

Let $a = \max\{2, 2-q-n\}$. Then $a \ge 2-q-n$, implying that $a+q+n-2 \ge 0$. We also have $a \le 2-p-n$, implying that $a+p+n-2 \le 0$ and so $a+p+q-2 \le 0$. If $a = \max\{2, 2-q-n\} = 2$, then Proposition 9 (i) implies that $W_{2,p,q,n}(z)$ interleaves $W_{1,p,q,n}(z)$, i.e., $W_{a,p,q,n}(z)$ interleaves $W_{a-1,p,q,n}(z)$. If $a = \max\{2, 2-q-n\} = 2-q-n$, then Proposition 11 implies that $W_{a,p,q,n}(z)$ interleaves $W_{a-1,p,q,n}(z)$.

Now assume that $\max\{2, 2-q-n\} < a \le 2-p-n$ and $W_{a-1,p,q,n}(z)$ interleaves $W_{a-2,p,q,n}(z)$. Note that $\max\{2, 2-q-n\} < a \le 2-p-n$ implies that a+q+n-2>0 and $a+p+q-2 \le a+p+n-2 \le 0$. Thus Proposition 9 (ii) implies that $W_{a,p,q,n}(z)$ interleaves $W_{a-1,p,q,n}(z)$. Therefore (ii) holds.

By Proposition 12, the following result is obtained.

Proposition 13 Let a be a positive integer and p,q,n be arbitrary real numbers with $p \le q \le n$. If one of the following conditions holds, then $W_{a,p,q,n}(z)$ has only real roots and therefore every root of $F_{a,p,q,n}(z)$ is either a real number or a complex number with its real part equal to 0:

(i) p+q is a negative integer and $a \ge 1-p-q$; and

(ii) q + n is an integer and $\max\{1, 1 - q - n\} \le a \le 2 - p - n$.

Acknowledgments

We wish to thank the Isaac Newton Institute for Mathematical Sciences, University of Cambridge, for generous support during the programme on Combinatorics and Statistical Mechanics (January-June 2008), where this work was started and partially finished.

References

- [1] Peter J. Cameron, Algebraic Properties of Chromatic Roots, *Available online* at www.maths.qmul.ac.uk/~pjc/csgnotes/alchrom1.pdf
- [2] Maria Chudnovsky and Paul Seymour, The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B 97 (2007), 350–357.
- [3] F.M. Dong, K.M. Koh and K.L. Teo, *Chromatic polynomials and chromaticity of graphs*, World Scientific Publishing Co. Pte. Ltd., 2005.
- [4] Steve Fisk, Polynomials, roots, and interlacing, arXiv:math/0612833v2.
- [5] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968), 52–71.
- [6] R.C. Read, A large family of chromatic polynomials, in: *Proceedings of the Third Caribbean Conference on Combinatorics and Computing (Bridgetown, 1981)*, (1981), 23–41.
- [7] R.C. Read and W.T.Tutte, Chromatic polynomials, in: Selected Topics in Graph Theory III (eds. L.W.Beineke and R.J.Wilson), Academic Press, New York (1988), 15–42.
- [8] A.A. Zykov, On some properties of linear complexes, (Russian) *Mat. Sbornik N.S.* **24** (66) (1949), 163–188.