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Abstract

This paper gives an elementary proof of the famous identity

cot θ =
1

θ
+

∞∑
k=1

2θ

θ2 − k2π2
, θ ∈ R\πZ.

Using nothing more than freshman calculus, the present proof is far sim-
pler than many existing ones. This result also leads directly to the Euler’s

and Neville’s identities, as well as the identity ζ(2) :=
∑∞
k=1

1
k2

= π2

6
.

1 Introduction

The famous identity,

π cot (πz) =

∞∑
ν=−∞

1

z + ν
=

1

z
+

∞∑
ν=1

2z

z2 − ν2
, z ∈ C\Z (1)

was probably known to Euler, who later in 1770 presented a more general (and
more complicated) form

π

n
·

cos π(w−z)2n

sin π(w+z)
2n − sin π(w−z)

2n

=
1

z
+

∞∑
ν=1

(
2w

(2ν − 1)2n2 − w2
− 2z

(2ν)2n2 − z2

)
in [3], where n ∈ Z+ and w, z ∈ C. Equation (1) which is also known as the
partial fraction representation of π cot (πz) can be shown to hold for non-integer
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complex numbers z, using complex analysis [10, 9, 2]. In particular, [2] is the
first to put in print a proof that employs the so-called Herglotz’s trick, thereby
simplifying the proof given in [9]. For an excellent historical account of this
identity and more, the reader is referred to [8].

The real version of (1), expressed as

cotx =
1

x
+

∞∑
k=1

2x

x2 − k2π2
, x ∈ R\πZ, (2)

is already an interesting identity in itself, attracting numerous elegant proofs
using real analysis (see [7, 5]). Unfortunately, many of these proofs are quite
involved and thus not readily accessible by beginners in calculus.

This paper presents an elementary and simpler proof of (2), using no more
than freshman calculus. Because of its lighter mathematical overhead, it is
hoped that the material herein can be of educational value in the following sense.
Instructors of calculus courses can make suitable adaptations of this material
for classroom teaching and discussion, design of investigative activities and en-
richment experiences. The paper is also written with teacher training purposes
in mind, i.e., to supply trainee teachers with pedagogical content knowledge
relevant to the teaching of calculus.

We organize the paper as follows. In Section 2, we establish some elementary
inequalities essential in the proof of the main result. Our proof of Equation(2)
appears in Section 3. The section is written in a self-contained manner, i.e., each
of the results we employ can be proven with background knowledge acquired
from a first year undergraduate Calculus course. In doing so, we demonstrate
the usefulness of the crucial results commonly taught in such a course. We
intentionally and completely bypass convergence theorems; whenever an inter-
change of limits, infinite sums and (differential or integral) operators is invoked,
there is always an elementary alternative. Section 4 showcases some interesting
applications of the identity(2). This serves resource materials that can be em-
ployed in the design of classroom activities for a freshman course in Calculus.
Throughout the paper, we denote the set of integers, integral multiples of π,
real numbers and complex numbers by Z, πZ,R and C respectively.

2 Some inequalities

We start with two basic inequalities commonly encountered in Calculus.

Proposition 2.1. If t ∈ (0, π), then t− t3

3! ≤ sin t ≤ t− t3

3! + t5

5! .

Proof. We establish only the lower bound, leaving the upper one as an exercise

for the diligent reader. Consider g(t) = sin t−
(
t− t3

3!

)
. Since g′′(t) = − sin t+

t ≥ 0, it follows from g′(0) = 0 that g′(t) = cos t −
(

1− t2

2!

)
≥ 0. Because

g(0) = 0, it then follows that g(t) ≥ 0.
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Proposition 2.2. If t ∈ (0, π2 ), then t
sin t ≤

π
2 .

Proof. This follows since f(t) = sin t
t is monotone decreasing on (0, π2 ).

These results lead to the following handy inequality:

Lemma 2.3. If t ∈ (0, π2 ), then 0 < − 1
t2 + csc2 t < 1.

Proof. Since 0 < sin t < t for all t ∈ (0, π2 ), we have 0 < 1
t2 < csc2 t so that

0 < − 1
t2 + csc2 t. Now, by Proposition 2.2,

− 1

t2
+csc2 t =

(t− sin t)(t+ sin t)

t2 sin2 t
≤

(t− t+ t3

3! )(2t)

t2 sin2 t
=

1

3

(
t

sin t

)2

≤ 1

3
·π

2

4
< 1.

3 Partial fraction representation of cot θ

The topic of partial fractions is key to many national curricula for pre-university
or high school mathematics (e.g., [6, 4]). Apart from its usual role in series
expansion and antiderivatives of rational functions, its connection with other
elementary functions is seldom mentioned.

In this section, our main aim is to obtain the following partial fraction rep-
resentation for cot θ:

Theorem 3.1. For θ ∈ R\πZ, it holds that

cot θ =
1

θ
+

∞∑
k=1

2θ

θ2 − k2π2
. (3)

Such a partial fraction representation must necessarily involve an infinite
sum since any finite partial fraction amounts to only a rational function, not
a trigonometric one. Because an infinite series can be seen as the limit of a
recursion, it deems fit to initiate our proof from a common-looking trigonometric
identity which somewhat ‘recursively’ defines cot θ.

Proposition 3.2. For any x ∈ (0, π), the following identity holds:

cotx =
1

2

(
cot

x

2
− tan

x

2

)
.

Proof. Take reciprocals in the double angle formula tanx = 2 tan x
1−tan2 x .

With a recursive mind-set, we apply the preceding proposition thrice to
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obtain

cot θ =
1

2

(
cot

θ

2
− tan

θ

2

)
=

1

2

(
1

2
cot

θ

4
− 1

2
tan

θ

4
− tan

θ

2

)
=

1

22

(
cot

θ

22
− tan

θ

22

)
− 1

2
cot

(
π

2
− θ

2

)
=

1

22

(
cot

θ

22
− tan

θ

22

)
− 1

2
· 1

2

(
cot

π − θ
22
− cot

π + θ

22

)
=

1

22

(
cot

θ

22
− tan

θ

22

)
+

1

22

(
cot

θ + π

22
+ cot

θ − π
22

)
.

A straightforward induction on n ≥ 2 then yields the generalization below.

Proposition 3.3. If θ ∈ (0, π) and n ≥ 2 is an integer, then

cot θ =
1

2n

(
cot

θ

2n
− tan

θ

2n

)
+

1

2n

2n−1−1∑
k=1

(
cot

θ + kπ

2n
+ cot

θ − kπ
2n

)
.

The well-worn fact that limα→0
α

sinα = 1 justifies that

Proposition 3.4. If θ ∈ (0, π), then

lim
n→∞

1

2n

(
cot

θ

2n
− tan

θ

2n

)
=

1

θ
.

Based on Propositions 3.3 and 3.4, it becomes evident that to achieve (3)
one must prove that:

Theorem 3.5. If θ ∈ (0, π), then

lim
n→∞

{
1

2n

2n−1−1∑
k=1

(
cot

θ + kπ

2n
+ cot

θ − kπ
2n

)
−

2n−1−1∑
k=1

2θ

θ2 − k2π2

}
= 0.

Proof. For n ≥ 2, we have:

1

2n

2n−1−1∑
k=1

(
cot

θ + kπ

2n
+ cot

θ − kπ
2n

)
−

2n−1−1∑
k=1

2θ

θ2 − k2π2

=
1

2n

2n−1−1∑
k=1

(
cot

(
θ + kπ

2n

)
− 2n

θ + kπ
+ cot

(
θ − kπ

2n

)
− 2n

θ − kπ

)
.

=
1

2n

2n−1−1∑
k=1

∫ kπ+θ
2n

kπ−θ
2n

(
1

t2
− csc2 t

)
dt
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Since 0 < − 1
t2 + csc2 t ≤ 1 for all t ∈

(
kπ−θ
2n , kπ+θ2n

)
⊂ (0, π2 ) by Lemma 2.3,

0 ≤ 1

2n

2n−1−1∑
k=1

∫ kπ+θ
2n

kπ−θ
2n

(
− 1

t2
+ csc2 t

)
dt ≤ θ

2n
.

By Squeeze Theorem, it follows that

lim
n→∞

1

2n

2n−1−1∑
k=1

∫ kπ+θ
2n

kπ−θ
2n

(
1

t2
− csc2 t

)
dt = 0

and consequently,

lim
n→∞

{
1

2n

2n−1−1∑
k=1

(
cot

θ + kπ

2n
+ cot

θ − kπ
2n

)
−

2n−1−1∑
k=1

2θ

θ2 − k2π2

}
= 0.

All in all, we have succeeded in showing that

Lemma 3.6. If θ ∈ (0, π), the following identity holds:

cot θ =
1

θ
+

∞∑
k=1

2θ

θ2 − k2π2
.

To prove Theorem 3.1, we need to extend Lemma 3.6 for θ ∈ R\πZ. To
prove this assertion, we choose α ∈ (0, π) and r ∈ Z so that θ = α+ rπ.

Since cot(θ − rπ) = cot θ, the result follows from Lemma 3.6 that

cot θ = cot(θ − rπ)

=
1

θ − rπ
+

∞∑
k=1

2(θ − rπ)

(θ − rπ − kπ)(θ − rπ + kπ)

=
1

θ − rπ
+

∞∑
k=1

(
1

θ − rπ − kπ
+

1

θ − rπ + kπ

)

=
1

θ − rπ
+

∞∑
k=r+1

(
1

θ − kπ
+

1

θ + (k − r)π

)
+

r∑
k=1

1

θ + (k − r)π

=
1

θ − rπ
+

∞∑
k=r+1

(
1

θ − kπ
+

1

θ + (k − r)π

)
+

r−1∑
k=0

1

θ − kπ

=
1

θ
+

∞∑
k=1

(
1

θ − kπ
+

1

θ + kπ

)

=
1

θ
+

∞∑
k=1

2θ

θ2 − k2π2
.

The proof of Theorem 3.1 is now complete.
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4 Some applications

Putting θ = πz into (3), z 6∈ Z, yields immediately:

Corollary 4.1 (Euler’s identity). For z ∈ R\Z, it holds that

π cot (πz) =
1

z
+

∞∑
k=1

2z

z2 − k2
.

An interesting consequence of Theorem 3.1, which is almost immediate, is:

Corollary 4.2 (Neville’s identity). If θ ∈ R\πZ, then

csc2 θ − 1

θ2
=

∞∑
k=1

(
1

(θ − kπ)2
+

1

(θ + kπ)2

)
. (4)

A näive derivation of (4) is via a term-by-term differentiation of (3) since
2θ

θ2−k2π2 = 1
θ−kπ + 1

θ+kπ . However, this approach involves the unjustified in-
terchange of the differential operator and the infinite sum. We present below
a proof to fully justify this interchange of operators without appealing to any
convergence theorems.

Proof. Choose δθ > 0 so small that (θ − δθ, θ + δθ) ⊂ (rπ, (r + 1)π) for some
r ∈ Z. Then for any integer n > |r|, we have

1

δθ

∣∣∣∣∣
n∑
k=1

∫ θ+δθ

θ

(
1

(t− kπ)2
+

1

(t+ kπ)2

)
dt−

∫ θ+δθ

θ

∞∑
k=1

(
1

(t− kπ)2
+

1

(t+ kπ)2

)
dt

∣∣∣∣∣
=

1

δθ

∣∣∣∣∣
∫ θ+δθ

θ

∞∑
k=n+1

(
1

(t− kπ)2
+

1

(t+ kπ)2

)
dt

∣∣∣∣∣
≤ 1

π2δθ

∣∣∣∣∣
∫ θ+δθ

θ

∞∑
k=n+1

(
1

(k − r − 1)2
+

1

(k + r)2

)
dt

∣∣∣∣∣
<

∞∑
k=n+1

(
1

(k − r − 1)2
+

1

(k + r)2

)
<

2

n− 1− r
.

Now, Theorem 3.1 asserts that

1

δθ

∫ θ+δθ

θ

∞∑
k=1

(
1

(t− kπ)2
+

1

(t+ kπ)2

)
dt =

1

δθ

{
1

θ + δθ
−cot (θ + δθ)−(

1

θ
−cot θ)

}
.

Taking δθ → 0, the first principle ensures that∣∣∣∣∣
n∑
k=1

(
1

(θ − kπ)2
+

1

(θ + kπ)2

)
−
(
− 1

θ2
+ csc2 θ

)∣∣∣∣∣ ≤ 2

n− 1− r
.
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Since limn→∞
2

n−1−r = 0, it follows that

∞∑
k=1

(
1

(θ − kπ)2
+

1

(θ + kπ)2

)
= csc2 θ − 1

θ2

and the proof is now complete.

Remark 4.3. The above proof of (4) is much more direct than the original one
presented in [7].

Corollary 4.4 (Euler’s formula for ζ(2)).

ζ(2) :=

∞∑
k=1

1

k2
=
π2

6
.

Proof. On one hand, limθ→0+
∑∞
k=1

(
1

(θ−kπ)2 + 1
(θ+kπ)2

)
= 2

π2

∑
k=1

1
k2 . To

account for the legitimate interchange of limits, we first observe, for θ ∈ (0, π2 ),
that

∞∑
k=1

1

(kπ + θ)2
≤
∞∑
k=1

1

k2π2
≤
∞∑
k=1

1

(kπ − θ)2
.

Next, we need to establish that
∑∞
k=1

{
1

(kπ−θ)2 −
1

(kπ+θ)2

}
≤ 16θ for θ ∈ (0, π2 ).

This derives easily from the following inequalities:

∞∑
k=1

{
1

(kπ − θ)2
− 1

(kπ + θ)2

}
≤
∞∑
k=1

4kπθ

(k2π2 − θ2)2

≤
∞∑
k=1

4kθ

π3(k2 − 1
4 )2

≤
∞∑
k=1

64kθ

(4k2 − 1)2
≤
∞∑
k=1

32θ

4k2 − 1
≤ 16θ,

where the second-to-last inequality holds since 4k2− 1 = (2k− 1)(2k+ 1) ≥ 2k.
Thus, limθ→0+

∑∞
k=1

1
(kπ+θ)2 = limθ→0+

∑∞
k=1

1
(kπ−θ)2 =

∑∞
k=1

1
k2π2 . This then

implies that limθ→0+
∑∞
k=1

(
1

(θ−kπ)2 + 1
(θ+kπ)2

)
= 2

π2

∑
k=1

1
k2 .

On the other hand, Proposition 2.1 bears upon us to have

( θ
3

3! −
θ5

5! )(2θ −
θ3

3! )

θ4
≤ (θ − sin θ)(θ + sin θ)

θ4
≤

θ3

3! · 2θ
θ4

and thus, limθ→0+(csc2 θ − 1
θ2 ) = 1

3 . The desired result then follows.
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5 Concluding remarks

This paper presents a simple and direct proof of the famous Euler’s partial
fraction representation of the cotangent function. Besides being an intriguing
identity in its own right, (3) has seen recent applications in the parametric
Euler’s iterated sums [1]. We hope to demonstrate, within this small exposition,
that even basic calculus techniques can be harnessed to yield nontrivial results
that are usually obtained through, otherwise, more difficult means.
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