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Abstract

This paper presents a unified approach, based on certain Fourier
series, to several interesting calculations related to the evaluation of
the Riemann ζ-function at even integral arguments. Our approach
reported herein has two main advantages: (i) a lighter mathematical
overhead (in fact, no more than freshman calculus, with some very
minimal background knowledge in Fourier series), and (ii) an emer-
gence of cleaner proofs of known results.

1 Introduction

In this paper, the Riemann Zeta function ζ(s) is defined by

ζ(s) :=

{∑∞
k=1

1
ks (<(s) > 1)

1
21−s

∑∞
k=1

(−1)k
ks (<(s) > 0, s 6= 1)

(1.1)

The usual analytic continuation of ζ allows the value of ζ(0) to be
defined as −1

2 . Evident from the title of this article, we only need to
focus on the Riemann Zeta function ζ restricted on the non-negative

1

howk
Text Box
Technical Report M2012-2April 2012Mathematics and Mathematics EducationNational Institute of EducationSingapore

howk
Sticky Note
Unmarked set by howk



integers N. Leonhard Euler studied the ζ-function restricted on the
positive integers in 1740, and was the first to answer the Basel prob-
lem, i.e., that of presenting the exact value of ζ(2) in [5]. For a detailed
historical account of Euler’s solution to the Basel problem, we refer to
the excellent work of L. Debnath [4]. The exact values of zeta function
at the even integral arguments are given by the formula

ζ(2n) = (−1)n+1B2n(2π)2n

2(2n)!
, (1.2)

where B2n is the 2nth Bernoulli number.
There are several recent works revisiting the evaluation of ζ(2k)

using elementary (but not necessarily easy) methods. For example, [7]
employs the Chebyshev’s polynomials to obtain the infinite product
representation for the sine function which in turn yields a proof of
ζ(2) = π2

6 . However, the method reported therein does not seem
to apply to the evaluation of ζ(2k) for higher values of k. A recent
work [6] establishes the value of ζ(2) using the Neville’s identity. A
new proof of Equation (1.2) relying on the Taylor series expansion for
the tangent function can be found in [3]. No such simple values of the
zeta function at odd integer arguments are known to date.

Most elementary methods that deal with calculations related to
the ζ-function at nonnegative integers argument are based on spe-
cial functions and identities, and complex analysis. In this paper, we
perform these calculations and derive known results using a compar-
atively uniform and simple approach via Fourier series. Though the
idea that the ζ-function is related to Fourier series has been folkloric,
this is only made explicit very recently ([10]). Our method focuses on
a specific class of trigonometric series – the associated Clausen func-
tions

∑∞
k=0

cos (kx)
k2n

and
∑∞

k=0
sin (kx)
k2n+1 . Notably, the Fourier cosine series

for x2m has been used by N. Robbins in [9] to evaluate ζ(2m). Our
present method differs from [9] in that not only are we able to eval-
uate ζ at its even integral arguments but also to produce an explicit
recurrence relation for ζ (see loc. cit. Corollary 3.8).

We organize our paper as follows. In Section 2, we present the pre-
liminary definitions and results. Then, we employ basic calculus tech-
niques to establish some handy identities concerning the associated
Clausen functions. In Section 3, a proof of Euler’s theorem ζ(2) = π2

6
à la the ε − N definition is given. In Section 4, we establish two
infinite series representations concerning the associated Clausen func-
tions. The highlight is a forward substitution method for obtaining
the exact values of ζ(2n), using a simpler recursively-defined sequence
αk in place of the Bernoulli numbers. In particular, we display the
calculation of the exact values of ζ(2n) for n = 1, 2, . . . , 5.
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2 Some trigonometric series

2.1 Results concerning sums and series

In this section, we highlight some useful results concerning certain
trigonometric series.

Proposition 2.1. For any t ∈ R and n ∈ Z+, these identities hold:

n∑
k=1

cos (kt) =
sin
(
n+ 1

2

)
t− sin 1

2 t

2 sin 1
2 t

(2.1)

and
n∑
k=1

sin (kt) =
cos 1

2 t− cos
(
n+ 1

2

)
t

2 sin 1
2 t

(2.2)

Proof. Applying the factor formulae and the method of difference.

Corollary 2.2. For any t ∈ (0, π] and m, n ∈ Z+ where m < n,∣∣∣∣∣∣
n∑

j=m+1

sin jt

∣∣∣∣∣∣ ≤ 1

sin 1
2 t
.

Proof. By the preceding proposition, we have∣∣∣∣∣∣
n∑

j=m+1

sin jt

∣∣∣∣∣∣ =

∣∣∣∣∣sin
(
n+m+1

2

)
t sin

(
n−m
2

)
t

sin 1
2 t

∣∣∣∣∣ ≤ 1

sin 1
2 t
.

Theorem 2.3. If x ∈ (0, π), then the trigonometric series
∑∞

k=1
sin kx
k

converges. Moreover,
∑∞

k=1
sin (kx)

k = π−x
2 .

Proof. See Lemmata 7.1.5 and 7.1.6 in [8].

The following is a specialization of Theorem 7.1.2 of [8]:

Lemma 2.4 (Summation by parts). Let (uk)
∞
k=0 and (vk)

∞
k=0 be two

sequences of real numbers. Then,

n∑
k=0

ukvk = vn

n∑
k=0

uj −
n−1∑
k=0

(vk − vk+1)
k∑
j=0

uj

 .
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Lemma 2.5. Let t ∈ (0, π] and n ∈ Z+. Then, the following holds:

∞∑
k=n+1

sin (kt)

k
=

∞∑
k=n+1

1

k(k + 1)

k∑
j=n+1

sin (jt). (2.3)

Proof. Let N ∈ Z+ be arbitrary.∣∣∣∣∣∣
N∑

k=n+1

sin (kt)

k
−

∞∑
k=n+1

(
1

k
− 1

k + 1
)

k∑
j=n+1

sin (jt)

∣∣∣∣∣∣
≤
∣∣∣∣ 1

N

N∑
k=n+1

sin (kt) +
N−1∑
k=n+1

(
1

k
− 1

k + 1
)

k∑
j=n+1

sin (jt)

−
∞∑

k=n+1

(
1

k
− 1

k + 1
)

k∑
j=n+1

sin (jt)

∣∣∣∣ (by Lemma 2.4)

≤ 1

N

∣∣∣∣∣
N∑

k=n+1

sin (kt)

∣∣∣∣∣+

∞∑
k=N

∣∣∣∣∣∣( 1

k
− 1

k + 1
)

k∑
j=n+1

sin (jt)

∣∣∣∣∣∣
≤ 1

sin 1
2 t

(
1

N
+
∞∑
k=N

(
1

k
− 1

k + 1
)

)
(by Corollary 2.2)

≤ 2

N sin 1
2 t
,

3 Evaluation of ζ(2n)

The task of obtaining the exact values of ζ(2n) begins with the sim-
plest case of ζ(2), which is also known as the Basel problem. Our
approach based on trigonometric series hinges crucially upon the fol-
lowing observation:

Lemma 3.1. Let n ∈ Z+. Then, the nth partial sum of ζ(2) can be
written as

n∑
k=1

1

k2
=

2

π

∫ π

0

(
π − t

2

) n∑
k=1

sin (kt)

k
dt. (3.1)

Proof. Follows directly from integration by parts.

Recalling from Theorem 2.3 that
∑∞

k=1
sin (kt)
k = π−t

2 , one may be
tempted to reason naively that by limiting k −→∞,

ζ(2) =
∞∑
k=1

1

k2
=

∫ π

0

(
π − t

2

) ∞∑
k=1

sin (kt)

k
dt =

∫ π

0

(
π − t

2

)2

dt =
π2

6
.
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Alas! This reasoning is flawed as
∑∞

k=1
sin (kx)

k is not uniformly con-
vergent to π−x

2 on [0, π]. A more subtle argument in the style of an
ε − N proof, as we shall now demonstrate, is required to secure the
desired result:

Theorem 3.2 (Euler, 1740).

∞∑
k=1

1

k2
=
π2

6
. (3.2)

Proof. By virtue of Lemma 3.1, for every positive integer n, we have∣∣∣∣∣
n∑
k=1

1

k2
− π2

6

∣∣∣∣∣ =
2

π

∣∣∣∣∣
∫ π

0

(
π − t

2

) n∑
k=1

sin (kt)

k
dt−

∫ π

0

(
π − t

2

)2

dt

∣∣∣∣∣ .
This in turn, by the triangle inequality, is bounded above by

∣∣∣∣∣∣
∫ 1
n

0

(
π − t

2

) n∑
k=1

sin (kt)

k
dt−

∫ 1
n

0

(
π − t

2

)2
dt

∣∣∣∣∣∣︸ ︷︷ ︸
U

+
∣∣∣∣∣∣
∫ π

1
n

(
π − t

2

)2
dt−

∫ π
1
n

(
π − t

2

) n∑
k=1

sin (kt)

k
dt

∣∣∣∣∣∣︸ ︷︷ ︸
V

.

To bound U , consider the inequalities:

U ≤
∫ 1

n

0

π − t
2

n∑
k=1

| sin (kt)|
k

+

∣∣∣∣∣
∫ 1

n

0

(
π − t

2

)2

dt

∣∣∣∣∣
=

(
π

2n

n∑
k=1

1

k

)
+
π2

4n
.

To bound V , first exploit Theorem 2.3 and Lemma 2.5 to rewrite the
difference of the integrals as∫ π

1
n

(
π − t

2

)[
π − t

2
−

n∑
k=1

sin (kt)

k

]
dt

=

∫ π

1
n

(
π − t

2

) ∞∑
k=n+1

sin (kt)

k
dt

=

∫ π

1
n

(
π − t

2

) ∞∑
k=n+1

1

k(k + 1)

k∑
j=k+1

sin (jt) dt,

and then use Corollary 2.2 to bound this above by

π

2

∫ π

1
n

1

sin 1
2 t

∞∑
k=n+1

1

k(k + 1)
dt ≤ π2

2(n+ 1)
(lnπ + lnn) .
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So, all in all, we have∣∣∣∣∣
n∑
k=1

1

k2
− π2

6

∣∣∣∣∣ ≤ π

2n

n∑
k=1

1

k
+
π2

4n
+

π2

2(n+ 1)
(lnπ + lnn)

≤ 2

n

n∑
k=1

2√
k +
√
k − 1

+
3

n
+

42

2(n+ 1)
(ln 4 + 2

√
n)

≤ 4√
n

+
3

n
+

16

n+ 1
+

16√
n
≤ 39√

n
.

Having gained success on the exact evaluation of ζ(2) using trigono-

metric series such as
∑∞

k=1
sin (kx)

k , it is natural to ask if similar series
can be considered in the exact evaluation of ζ(2n) for positive integers
n. In the ensuing development, we carry out this plan by considering
the following two trigonometric series:

Cn(x) :=

∞∑
k=1

cos (kx)

k2n
and Sn(x) :=

∞∑
k=1

sin (kx)

k2n+1
, x ∈ [0, π], n ∈ Z+

They are sometimes referred to as the associated Clausen functions in
the existing literature (see, for example, p.201 of [2]). We record here
an elementary property concerning these series:

Proposition 3.3. Let n ∈ Z+. Then, the series
∞∑
k=1

cos (kx)

k2n
and

∞∑
k=1

sin (kx)

k2n+1
, x ∈ [0, 2π]

converge absolutely (and hence uniformly) on [0, 2π].

Our inductive approach bears upon us to begin with n = 1.

Theorem 3.4. If x ∈ [0, 2π], then
∑∞

k=1
cos kx
k2

converges and

C1(x) =

∞∑
k=1

cos (kx)

k2
= −ζ(2)

2
+

(π − x)2

4
. (3.3)

Proof. In view of Theorem 3.2, we may assume that x ∈ (0, 2π). Since
for any positive integer n, it holds that∣∣∣∣∣
∫ π

x

n∑
k=1

sin (kt)

k
dt−

∫ π

x

π − t
2

dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ π

x

∞∑
k=n+1

sin (kt)

k
dt

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ π

x

∞∑
k=n+1

1

k(k + 1)

k∑
j=n+1

sin (jt) dt

∣∣∣∣∣∣
≤ 1

n+ 1

∣∣∣∣∣
∫ π

x

1

sin 1
2 t
dt

∣∣∣∣∣ ,
6



it follows that
∞∑
k=1

(−1)k

k2
−
∞∑
k=1

cos (kx)

k2
=

∫ π

x

∞∑
k=1

sin (kt)

k
dt =

∫ π

0

π − t
2

dt =
(π − x)2

4
.

Finally, because
∑∞

k=1
(−1)k
k2

= − ζ(2)
2 , we obtain the desired result.

Remark 3.5. Notice that the proof technique used in the preceding
theorem cannot be cheaply extended to account for the convergence at
x = 0 since the bounding technique involves the function 1

sin 1
2
t

which

has a singularity at t = 0.

Theorem 3.6. If x ∈ [0, 2π], then
∑∞

k=1
sin kx
k3

converges and

S1(x) :=
∞∑
k=1

sin (kx)

k3
=
ζ(2)

2
(π − x)− (π − x)3

12
. (3.4)

Proof. The result follows immediately from∣∣∣∣∣
∫ π

x

( n∑
k=1

cos kt

k2
−
∞∑
k=1

cos kt

k2

)
dt

∣∣∣∣∣→ 0 as n→∞.

and Theorem 3.4.

To find the exact value of ζ(4), one could have proceeded by using
the result that

S1(x) =
ζ(2)

2
(π − x)− (π − x)3

12

and the following fact (analogous to Lemma 3.1) that
n∑
k=1

1

k4
=

2

π

∫ π

0

(
π − t

2

) n∑
k=1

sin (kt)

k3
dt

and arguing along the line of reasoning used in Theorem 3.2. However,
we choose not to do so. Instead, we opt for a more elegant method
that would derive the evaluation of ζ at all positive even integer ar-
guments. This necessarily calls for generalizations of Theorems 3.4
and 3.6, which appear as follows.

Theorem 3.7. For each positive integer n and x ∈ [0, π], the following
hold:
∞∑
k=1

cos (kx)

k2n
=

n∑
r=0

(−1)r+1 ·
(

1− 1

22n−2r−1

)
· ζ(2n− 2r) · (π − x)2r

(2r)!

(3.5)
∞∑
k=1

sin (kx)

k2n+1
=

n∑
r=0

(−1)r ·
(

1− 1

22n−2r−1

)
· ζ(2n− 2r) · (π − x)2r+1

(2r + 1)!

(3.6)
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Proof. We proceed by induction as promised earlier. The base cases
of n = 1 are just Theorems 3.4 and 3.6. Assuming that the statements
hold for n, we must show that they hold for n+ 1. Since Theorem 3.3
guarantees that∫ π

x

∞∑
k=1

−sin (kt)

k2n+1
dt = −

∞∑
k=1

∫ π

x

sin (kt)

k2n+1
dt =

∞∑
k=1

cos (kπ)

k2n+2
−
∞∑
k=1

cos (kx)

k2n+2
,

it follows that
∞∑
k=1

cos (kx)

k2n+2
=
∞∑
k=1

(−1)k

k2n+2
+

∫ π

x

∞∑
k=1

sin (kt)

k2n+1
dt

= −
(

1− 1

22n+1

)
ζ(2n+ 2) +

∫ π

x

∞∑
k=1

sin (kt)

k2n+1
dt.

Invoking the induction hypothesis, one has

∞∑
k=1

cos (kx)

k2n+2
=−

(
1− 1

22n+1

)
ζ(2n+ 2)

+

∫ π

x

n∑
r=0

(−1)r ·
(

1− 1

22n−2r−1

)
· ζ(2n− 2r) · (π − t)2r+1

(2r + 1)!
dt

=
n+1∑
r=0

(−1)r+1 ·
(

1− 1

22(n+1)−2r−1

)
· ζ(2(n+ 1)− 2r) · (π − x)2r

(2r)!
.

Similar reasoning applies for the sine counterpart.

Corollary 3.8. Let n ∈ Z+. Then, the following hold:

1.
(
2− 1

22n−1

)
·ζ(2n)+

∑n
r=1(−1)r

(
1− 1

22n−2r−1

)
·ζ(2n−2r)· π2r

(2r)! =
0.

2.
∑n

r=0(−1)r
(
1− 1

22n−2r−1

)
· ζ(2n− 2r) · π2r

(2r+1)! = 0.

Proof. 1. Put x = 0 in the cosine series of Theorem 3.7.

2. Put x = 0 in the sine series of Theorem 3.7.

From Corollary 3.8(2), substituting values of n = 1, 2, . . . one ob-
tains the linear system Ax = b, where A = (aij) is defined by

aij =

{
(−1)i+j

(
1− 1

22j−3

)
π2i−2j

(2i−1)! if i < j;

0 otherwise.

and x = (ζ(0) ζ(2) · · · ζ(2n))T and b = (12 0 · · · 0)T . Via forward
substitution, one easily obtains an expression for ζ(2n) as a rational
multiple of π2n without the use of Bernoulli numbers.
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Theorem 3.9. Let n ∈ N. Then, one has ζ(2n) = 22n−2π2n

22n−1−1 αn, where

α0 = 1 and αn =

n∑
r=1

(−1)r+1 αn−r
(2r + 1)!

, n ∈ Z+.

Proof. The proof proceeds by induction on n.

For the base case of n = 0, because 22(0)−2π0

22(0)−1−1α0 = −1
2 = ζ(0), the

statement holds. For the inductive step, we assume that

ζ(2k) =
22k−2π2k

22k−1 − 1
αk, 1 ≤ k < n.

The proof at the inductive step now proceeds as follows:

ζ(2n) =

(
1− 1

22n−1

)−1 n∑
r=1

(−1)r+1

(
1− 1

22n−2r−1

)
ζ(2n− 2r) · π2r

(2r + 1)!

=
22p−1

22n−1 − 1

n∑
r=1

(−1)r+1 22n−2r−1 − 1

22n−2r−1
· 22k−2r−2π2n−2r

22n−2r−1 − 1
αn−r ·

π2r

(2r + 1)!

=
22n−2π2n

22n−1 − 1

n∑
r=1

(−1)r+1 αn−r
(2r + 1)!

.

=
22n−2π2n

22n−1 − 1
αn.

Remark 3.10. A similar result expressing ζ(2k) as akπ
2k where ak

are given recursively by
∑m

j=1
(−1)jaj

(2m+1−2j)! = m
(2m+1)! can be found in [1].

Our recurrence relation in Theorem 3.9 used to calculate the αk’s is
easier to apply, compared to Chen’s recurrence formula.

As is well known that ζ(2n) = (−1)n−1

2(2n)! B2n(2π)2n, where B2n is the

2nth Bernoulli number, it must be that (−1)n−1

2(2n)! B2n(2π)2n = 22n−2π2n

22n−1−1 αn,
which implies that

Corollary 3.11. For any positive integer n, B2n = (−1)n−1(2n)!
22n−2 αn.

Compared to the form involving Bernoulli numbers, the formula
for computing the exact values of ζ(2n) given in Theorem 3.9 is easier
to use. For instance, a direct computation yields

α1 =
1

6
, α2 =

7

360
, α3 =

31

15120
, α4 =

127

604800
, α5 =

73

3421440
.

This then returns:

ζ(2) = 22(1)−2π2

22(1)−1−1α1 = 1
6π

2, ζ(4) = 22(2)−2π4

22(2)−1−1α2 = 1
90π

4,

ζ(6) = 22(3)−2π6

22(3)−1−1α3 = 1
945π

6, ζ(8) = 22(4)−2π8

22(4)−1−1α4 = 1
9450π

8,

ζ(10) = 22(5)−2π10

22(5)−1−1 α5 = 1
93555π

10.
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4 Concluding remarks

In this paper, we have presented a unified approach to evaluate ζ(2k)
based on elementary calculus techniques applied to associated Clausen
functions. In the course of proving the famous formula (1.2) for ζ(2k),
we produced two recurrence formulae for ζ (c.f. Corollary 3.8). Our
Fourier-series methodology has been further developed to yield rep-
resentations of ζ(2k + 1) as an infinite series involving ζ(2j)’s, fast-
convergent series representations for ζ(2k + 1), log-sine integral for-
mulae and so on.
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