Published on 03 Apr 2025

Science Paper - Assistant Professor Jie Shen

We are pleased to share that Assistant Professor Jie Shen's recent article titled "Engineering grain boundaries in monolayer molybdenum disulfide for efficient water-ion separation" has been published in Science.


Abstract
Two-dimensional (2D) materials have long been considered as ideal platforms for developing separation membranes. However, it is difficult to generate uniform subnanometer pores over large areas on 2D materials. We report that the well-defined eight-membered ring (8-MR) pores, typically formed at the boundaries of two antiparallel grains of monolayer molybdenum disulfide (MoS2), can serve as molecular sieves for efficient water-ion separation. The density of grain boundaries and, consequently, the number of 8-MR pores can be tuned by regulating the grain size. Optimized MoS2 membranes outperformed the state-of-the-art membranes in forward osmosis tests by demonstrating both ultrahigh water/sodium chloride selectivity and exceptional water permeance. Creating precise pore structures on atomically thin films through grain boundary engineering presents a promising route for producing membranes suitable for various applications.

The link to the article can be found here.

About the Journal
Science has been at the center of important scientific discovery since its founding in 1880—with seed money from Thomas Edison. Today, Science continues to publish the very best in research across the sciences, with articles that consistently rank among the most cited in the world.