2023

Books

Koh, K. M., Dong, F. M., & Tay, E. G. (2023). Introduction to Graph Theory/ With solutions to selected problems. Singapore: World Scientific.

 

Conference Papers without proceedings

Dong, F.M. (2023, August). New expressions for order polynomials and chromatic polynomials. Paper presented at the 10th International Congress on Industrial and Applied Mathematics 20-25 Aug, Tokyo, Japan.
Dong, F.M., & Zhang, M.Q. (2023, June). List color-function versus chromatic polynomial. Paper presented at the 2023 Xinjiang-Shanghai Graph Theory and Combinatorial Mathematics Seminar, Urumqi, China.
Dong, F.M. (2023, April). List-color functions versus chromatic polynomials. Paper presented at AMS 2023 Spring Eastern Sectional Meeting, Online, United States.

 

Journal Articles

Chen, K., Toh, T. L., Zhu, T. (2023). Use of dynamic geometry software in the teaching of matrix and transformation: An exemplar of a classroom enactment. Learning Science and Mathematics Online, 18(1), 1-15.
Fengming Dong and Meiqiao Zhang, An improved lower bound of P(G,L)-P(G,k) for k-assignments L. J. Combinatorial Theory Ser. B 161 (July 2023), 109-119.
Fengming Dong and Sherry H.F. Yan, Proving identities on weight polynomials of tiered trees via Tutte polynomials,J. Combinatorial Theory Ser. A 193 (Jan 2023), 105689.
Ho, W. K. (2023). Computation as a Big Idea in Mathematics. The Electronic Journal of Mathematics and Technology, 17(1), 1-23.
Wong, H. W. W., & Tay, E. G. (2023). Optimal orientations of Vertex-multiplications of Trees with Diameter 4. Theory and Applications of Graphs, 10(1), Article 6.
Meiqiao Zhang and Fengming Dong, ZDP(n) is bounded above by n2-(n+3)/2. J. Graph Theory 104 (Sep 2023), 133-149.
Meiqiao Zhang and Fengming Dong, DP color functions versus chromatic polynomials (II). J. Graph Theory 103 (Aug 2023), 740-761.
Ong, Z . P., Chen, A. A., Zhu, T., & Zhang, J. T. (2023). Testing Equality of Several Distributions at High Dimensions: A Maximum-Mean-Discrepancy-Based Approach. Mathematics, 11(20), 4374.
Zhang, L., Zhu, T., & Zhang, J. T. (2023). Two-Sample Behrens'Fisher Problems for High-Dimensional Data: a Normal Reference Scale-Invariant Test. Journal of Applied Statistics, 50, 456-476.
Zhu, T., Wang, P., & Zhang, J. T. (2023). Two-sample Behrens'Fisher problems for high-dimensional data: a normal reference F-type test. Computational Statistics, 0(null), 1-24.