2023
Books
Koh, K. M., Dong, F. M., & Tay, E. G. (2023). Introduction to Graph Theory/ With solutions to selected problems. Singapore: World Scientific. |
Conference Papers without proceedings
Dong, F.M. (2023, August). New expressions for order polynomials and chromatic polynomials. Paper presented at the 10th International Congress on Industrial and Applied Mathematics 20-25 Aug, Tokyo, Japan. |
Dong, F.M., & Zhang, M.Q. (2023, June). List color-function versus chromatic polynomial. Paper presented at the 2023 Xinjiang-Shanghai Graph Theory and Combinatorial Mathematics Seminar, Urumqi, China. |
Dong, F.M. (2023, April). List-color functions versus chromatic polynomials. Paper presented at AMS 2023 Spring Eastern Sectional Meeting, Online, United States. |
Journal Articles
Chen, K., Toh, T. L., Zhu, T. (2023). Use of dynamic geometry software in the teaching of matrix and transformation: An exemplar of a classroom enactment. Learning Science and Mathematics Online, 18(1), 1-15. |
Fengming Dong and Meiqiao Zhang, An improved lower bound of P(G,L)-P(G,k) for k-assignments L. J. Combinatorial Theory Ser. B 161 (July 2023), 109-119. |
Fengming Dong and Sherry H.F. Yan, Proving identities on weight polynomials of tiered trees via Tutte polynomials,J. Combinatorial Theory Ser. A 193 (Jan 2023), 105689. |
Ho, W. K. (2023). Computation as a Big Idea in Mathematics. The Electronic Journal of Mathematics and Technology, 17(1), 1-23. |
Wong, H. W. W., & Tay, E. G. (2023). Optimal orientations of Vertex-multiplications of Trees with Diameter 4. Theory and Applications of Graphs, 10(1), Article 6. |
Meiqiao Zhang and Fengming Dong, ZDP(n) is bounded above by n2-(n+3)/2. J. Graph Theory 104 (Sep 2023), 133-149. |
Meiqiao Zhang and Fengming Dong, DP color functions versus chromatic polynomials (II). J. Graph Theory 103 (Aug 2023), 740-761. |
Ong, Z . P., Chen, A. A., Zhu, T., & Zhang, J. T. (2023). Testing Equality of Several Distributions at High Dimensions: A Maximum-Mean-Discrepancy-Based Approach. Mathematics, 11(20), 4374. |
Zhang, L., Zhu, T., & Zhang, J. T. (2023). Two-Sample Behrens'Fisher Problems for High-Dimensional Data: a Normal Reference Scale-Invariant Test. Journal of Applied Statistics, 50, 456-476. |
Zhu, T., Wang, P., & Zhang, J. T. (2023). Two-sample Behrens'Fisher problems for high-dimensional data: a normal reference F-type test. Computational Statistics, 0(null), 1-24. |